Product Description
As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.
Our advantage:
1. Full range of products
2. MOQ qty: 5pcs/items
3. Delivery on time
4: Warranty: 1 YEAR
5. Develope new items: FREE
Brand Name |
KOWA DRIVE SHAFT |
Item name |
OEM |
Car maker |
For all japanese/korean/european/american car |
Moq |
5pcs |
Guarantee |
12 months |
sample |
Available if have stock |
Price |
Send inquiry to get lastest price |
BOX/QTY |
1PCS/Bag 4PCS /CTNS |
For some items, we have stock, small order (+3000USD) is welcome.
The following items are some of drive shafts, If you need more information, pls contact us for ASAP.
For Japanese Car | |||
for TOYOTA | for TOYOTA | ||
43420-57170 | 43420-57180 | 43410-0W081 | 43420-0W080 |
43410-57120 | 43420-57190 | 43410-0W091 | 43420-0W090 |
43410-57130 | 43420-57120 | 43410-0W100 | 43420-0W110 |
43410-57150 | 43420-02B10 | 43410-0W110 | 43420-0W160 |
43410-06221 | 43420-02B11 | 43410-0W140 | 43420-32161 |
43410-06231 | 43420-02B60 | 43410-0W150 | 43420-33250 |
43410-06460 | 43420-02B61 | 43410-0W180 | 43420-33280 |
43410-06570 | 43420-02B62 | 43410-12410 | 43420-48090 |
43410-06580 | 43420-06221 | 43410-33280 | 43420-48091 |
43410-066-90 | 43420-06231 | 43410-33290 | 43430OK571 |
43410-06750 | 43420-06460 | 43410-33330 | 66-5245 |
43410-06780 | 43420-06490 | 43410-48070 | 66-5247 |
43410-06A40 | 43420-06500 | 43410-48071 | 43420-57150 |
43410-06A50 | 43420- 0571 0 | 43410-0W061 | 43420-0W061 |
43410-07070 | 43420-06610 | 43410-0W071 | 43420-0W071 |
for Acura | for LEXUS | ||
44305STKA00 | 66-4198 | 43410-06200 | 43410-06480 |
44305STKA01 | 66-4261 | 43410-06450 | 43410-06560 |
44305SZPA00 | 66-4262 | 66-5265 | |
44306STKA00 | 66-4270 | for MITSUBISHI | |
44306STKA01 | 66-4271 | 3815A309 | 3815A310 |
44306SZPA00 | |||
for Honda | for MAZDA | ||
44571S1571 | 44306S3VA61 | 5L8Z3A428AB | GG052550XD |
44011S1571 | 44306S3VA62 | 5L8Z3A428DA | GG052560XE |
44305S2HN50 | 44306S9VA51 | 66-2090 | GG362550XA |
44305SCVA50 | 44306S9VA71 | 6L8Z3A428A | YL8Z3A427AA |
44305SCVA51 | 44306SCVA50 | 9L8Z3A427B | YL8Z3A427BA |
44305SCVA90 | 44306SCVA51 | GG032550XD | YL8Z3A428AA |
44305SCVA91 | 44306SCVA90 | GG042550XD | YL8Z3A428BA |
44305STXA02 | 44306SCVA91 | GG042560XG | ZC32550XA |
44305SZAA01 | 44306STXA02 | for Nissan | |
44306S2H951 | 44306SZAA01 | 39101-1HS0A | 39100-1HS0A |
44306SZAA11 | 44306SZAA01RM | 39101-1HS0B | 39100-1HS0B |
44306SZAA12 | 66-4213 | ||
66-4214 | |||
for Europe Car | |||
for VOLKSWAGEN | for VOLKSWAGEN | ||
4885712AD | 7B0407271B | 7E0407271G | 7LA407272C |
4885713AF | 7B0407272 | 7E0407271P | 7LA4 0571 2CX |
4881214AE | 7B0407272E | 7LA407271E | |
7B0407271A | |||
for America Car | |||
for CHRYSLER | for MERCURY | ||
4593447AA | 557180AD | 4F1Z3B437AA | GG322560X |
4641855AA | 52114390AB | 5L8Z3A428DB | GG362560XA |
4641855AC | 5273546AC | 66-2249 | YL8Z3A427CA |
4641856AA | 66-3108 | 9L8Z3A427C | YL8Z3A427DA |
4641856AC | 66-3109 | 9L8Z3A427D | YL8Z3A427EA |
4882517 | 66-3130 | GG062550XD | YL8Z3A427FA |
4882518 | 66-3131 | GG062560XE | YL8Z3A428CA |
4882519 | 66-3234 | GG312560X | ZZDA2560X |
4882520 | 66-3518 | ZZDA2560XC | ZZDA2560XA |
557130AB | 66-3520 | for RAM | |
66-3552 | 66-3522 | 4885713AD | 55719AB |
66-3553 | 66-3551 | 4881214AD | 66-3404 |
66-3554 | 66-3639 | 55719AA | 66-3740 |
68193908AB | 66-3641 | 68571398AA | |
for FORD | for DODGE | ||
1F0571400 | E6DZ3V428AARM | 4593449AA | 7B0407272A |
1F0571410 | E8DZ3V427AARM | 4641855AE | 7B0407272B |
1F2Z3B436AA | E8DZ3V428AARM | 4641855EE | 7B0407272C |
2F1Z3A428CA | E90Y3V427AARM | 4641856AD | R4881214AE |
2M5Z3B437CA | E90Y3V428AARM | 4641856AF | RL189279AA |
4F1Z3B437BA | F0DZ3V427AARM | 4885710AC | 557180AG |
5M6Z3A428AA | F0DZ3V428AARM | 4885710AE | 5170822AA |
5S4Z3B437AA | F21Z3B437A | 4885710AF | 52114390AA |
66-2005 | F21Z3B437B | 4885710AG | 5273546AD |
66-2008 | F2DZ3B436A | 4885711AC | 5273546AE |
66-2571 | F2DZ3B436B | 4885711AD | 5273546AF |
66-2084 | F2DZ3B437A | 4885712AC | 5273558AB |
66-2086 | F2DZ3B437B | 4885712AE | 5273558AD |
66-2095 | F4DZ3B437A | 4885712AG | 5273558AE |
66-2101 | F57Z3B436BA | 4885712AH | 5273558AF |
66-2143 | F57Z3B437BA | 4885713AC | 4881214AC |
6S4Z3B437BA | F5DZ3A427BA | 4885713AG | 4881214AF |
8S4Z3B437A | F5DZ3A428AS | 4885713AI | 4881214AG |
9L8Z3A427A | F5DZ3B426D | 4885713AJ | 557130AA |
E6DZ3V427AARM | F5DZ3B436D | 5273558AG | 557180AE |
YF1Z3A428RS | F5DZ3B437B | 66-3382 | 557180AF |
YL8Z3A428DA | F5TZ3B436A | 66-3511 | 66-3514 |
YS4Z3B437BB | GG032560XG | 66-3759 | 66-3564 |
YS4Z3B437CB | GG362550X | ||
YF1Z3A427L | |||
for CHEVROLET | for JEEP | ||
257191 | 26062613 | 4578885AA | 5215710AA |
22791460 | 4578885AB | 5215711AB | |
26011961 | 4578885AC | 5215711AB | |
26571730 | 2657189 | 4720380 | 5273438AC |
2657165 | 66-1401 | 4720381 | 5273438AD |
26058932 | 66-1438 | 5012456AB | 5273438AE |
26065719 | 88982496 | 5012457AB | 5273438AG |
for HUMMER | 5066571AA | 66-3220 | |
1571204 | 595716 | 557120AB | 66-3221 |
15886012 | 66-1417 | 557120AC | 66-3298 |
for CADILLAC | 557120AD | 66-3352 | |
88957151 | 66-1416 | 557120AE | 66-3417 |
66-1009 | 66-1430 | 5189278AA | 66-3418 |
66-1415 | 88957150 | 5189279AA | 66-3419 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Condition: | New |
Color: | Black |
Certification: | ISO |
Type: | Drive Shaft |
Application Brand: | Nissan |
Samples: |
US$ 300/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Are there different types of driveline configurations based on vehicle type?
Yes, there are different types of driveline configurations based on the type of vehicle. Driveline configurations vary depending on factors such as the vehicle’s propulsion system, drivetrain layout, and the number of driven wheels. Here’s a detailed explanation of the driveline configurations commonly found in different vehicle types:
1. Front-Wheel Drive (FWD):
In front-wheel drive vehicles, the driveline configuration involves the engine’s power being transmitted to the front wheels. The engine, transmission, and differential are typically integrated into a single unit called a transaxle, which is located at the front of the vehicle. This configuration simplifies the drivetrain layout, reduces weight, and improves fuel efficiency. Front-wheel drive is commonly found in passenger cars, compact cars, and some crossover SUVs.
2. Rear-Wheel Drive (RWD):
Rear-wheel drive vehicles have their driveline configuration where the engine’s power is transmitted to the rear wheels. In this setup, the engine is located at the front of the vehicle, and the drivetrain components, including the transmission and differential, are positioned at the rear. Rear-wheel drive provides better weight distribution, improved handling, and enhanced performance characteristics, making it popular in sports cars, luxury vehicles, and large trucks.
3. All-Wheel Drive (AWD) and Four-Wheel Drive (4WD):
All-wheel drive and four-wheel drive driveline configurations involve power being transmitted to all four wheels of the vehicle. These configurations provide better traction and handling in various driving conditions, particularly on slippery or off-road surfaces. AWD systems distribute power automatically between the front and rear wheels, while 4WD systems are often manually selectable and include a transfer case for shifting between 2WD and 4WD modes. AWD and 4WD configurations are commonly found in SUVs, crossovers, trucks, and off-road vehicles.
4. Front Engine, Rear-Wheel Drive (FR) and Rear Engine, Rear-Wheel Drive (RR):
In certain performance vehicles and sports cars, driveline configurations may involve a front engine with rear-wheel drive (FR) or a rear engine with rear-wheel drive (RR). FR configurations have the engine located at the front of the vehicle, transmitting power to the rear wheels. RR configurations have the engine located at the rear, driving the rear wheels. These configurations provide excellent balance, weight distribution, and handling characteristics, resulting in enhanced performance and driving dynamics.
5. Other Configurations:
There are also various specialized driveline configurations based on specific vehicle types and applications:
- Mid-Engine: Some high-performance sports cars and supercars feature a mid-engine configuration, where the engine is positioned between the front and rear axles. This configuration offers exceptional balance, handling, and weight distribution.
- Front-Engine, Front-Wheel Drive (FF): While less common, certain compact and economy cars employ a front-engine, front-wheel drive configuration. This layout simplifies packaging and interior space utilization.
- Part-Time 4WD: In certain off-road vehicles, there may be a part-time 4WD driveline configuration. These vehicles typically operate in 2WD mode but can engage 4WD when additional traction is needed.
These are some of the driveline configurations commonly found in different vehicle types. The choice of driveline configuration depends on factors such as the vehicle’s intended use, performance requirements, handling characteristics, and specific design considerations.
Can driveline components be customized for specific vehicle or equipment requirements?
Yes, driveline components can be customized to meet specific vehicle or equipment requirements. Manufacturers and suppliers offer a range of options for customization to ensure optimal performance, compatibility, and integration with different vehicles or equipment. Customization allows for tailoring the driveline components to specific powertrain configurations, operating conditions, torque requirements, and space constraints. Let’s explore the details of customization for driveline components:
1. Powertrain Configuration:
Driveline components can be customized to accommodate different powertrain configurations. Whether it’s a front-wheel drive, rear-wheel drive, or all-wheel drive system, manufacturers can design and provide specific components such as differentials, gearboxes, and drive shafts that are compatible with the required power distribution and torque transfer characteristics of the particular configuration.
2. Torque Capacity:
Driveline components can be customized to handle specific torque requirements. Different vehicles or equipment may have varying torque outputs based on their intended applications. Manufacturers can engineer and produce driveline components with varying torque-handling capabilities to ensure reliable and efficient power transmission for a range of applications, from passenger vehicles to heavy-duty trucks or machinery.
3. Size and Configuration:
Driveline components can be customized in terms of size, shape, and configuration to fit within the space constraints of different vehicles or equipment. Manufacturers understand that each application may have unique packaging limitations, such as limited available space or specific mounting requirements. Through customization, driveline components can be designed and manufactured to align with these specific dimensional and packaging constraints.
4. Material Selection:
The choice of materials for driveline components can be customized based on the required strength, weight, and durability characteristics. Different vehicles or equipment may demand specific material properties to optimize performance, such as lightweight materials for improved fuel efficiency or high-strength alloys for heavy-duty applications. Manufacturers can provide customized driveline components with materials selected to meet the specific performance and operational requirements.
5. Performance Optimization:
Driveline components can be customized to optimize performance in specific applications. Manufacturers can modify aspects such as gear ratios, differential configurations, or clutch characteristics to enhance acceleration, traction, efficiency, or specific performance attributes based on the intended use of the vehicle or equipment. This customization ensures that the driveline components are tailored to deliver the desired performance characteristics for the specific application.
6. Specialized Applications:
For specialized applications, such as off-road vehicles, racing cars, or industrial machinery, driveline components can be further customized to meet the unique demands of those environments. Manufacturers can develop specialized driveline components with features like enhanced cooling, reinforced construction, or increased torque capacity to withstand extreme conditions or heavy workloads.
Overall, customization of driveline components allows manufacturers to meet the specific requirements of different vehicles or equipment. From powertrain configuration to torque capacity, size and configuration, material selection, performance optimization, and specialized applications, customization ensures that driveline components are precisely designed and engineered to achieve the desired performance, compatibility, and integration with specific vehicles or equipment.
What benefits do drivelines offer for different types of vehicles and equipment?
Drivelines offer several benefits for different types of vehicles and equipment across various industries. They play a critical role in power transmission, mobility, efficiency, and overall performance. Here’s a detailed explanation of the benefits drivelines offer for different types of vehicles and equipment:
1. Power Transmission: Drivelines are designed to efficiently transmit power from the engine or power source to the driven components, such as wheels, tracks, implements, or machinery. They ensure the smooth transfer of torque, allowing vehicles and equipment to generate the necessary power for propulsion, lifting, hauling, or other tasks. By effectively transmitting power, drivelines maximize the performance and productivity of vehicles and equipment.
2. Mobility and Maneuverability: Drivelines enable vehicles and equipment to achieve mobility and maneuverability across various terrains and working conditions. By transmitting power to the wheels or tracks, drivelines provide the necessary traction and control to overcome obstacles, navigate uneven surfaces, and operate in challenging environments. They contribute to the overall stability, handling, and agility of vehicles and equipment, allowing them to move efficiently and safely.
3. Versatility and Adaptability: Drivelines offer versatility and adaptability for different types of vehicles and equipment. They can be designed and configured to meet specific requirements, such as front-wheel drive, rear-wheel drive, four-wheel drive, or all-wheel drive systems. This flexibility allows vehicles and equipment to adapt to various operating conditions, including normal roads, off-road terrains, agricultural fields, construction sites, or industrial facilities. Drivelines also accommodate different power sources, such as internal combustion engines, electric motors, or hybrid systems, enhancing the adaptability of vehicles and equipment.
4. Efficiency and Fuel Economy: Drivelines contribute to efficiency and fuel economy in vehicles and equipment. They optimize power transmission by utilizing appropriate gear ratios, minimizing energy losses, and improving overall system efficiency. Drivelines with advanced technologies, such as continuously variable transmissions (CVTs) or automated manual transmissions (AMTs), can further enhance efficiency by continuously adjusting gear ratios based on load and speed conditions. Efficient driveline systems help reduce fuel consumption, lower emissions, and maximize the operational range of vehicles and equipment.
5. Load Carrying Capacity: Drivelines are designed to handle and transmit high torque and power, enabling vehicles and equipment to carry heavy loads. They incorporate robust components, such as heavy-duty axles, reinforced drive shafts, and durable differentials, to withstand the demands of load-bearing applications. Drivelines ensure the reliable transmission of power, allowing vehicles and equipment to transport materials, tow trailers, or carry payloads efficiently and safely.
6. Safety and Control: Drivelines contribute to safety and control in vehicles and equipment. They enable precise control over acceleration, deceleration, and speed, enhancing driver or operator confidence and maneuverability. Drivelines with features like traction control systems, limited-slip differentials, or electronic stability control provide additional safety measures by improving traction, stability, and handling in challenging road or operating conditions. By ensuring optimal power distribution and control, drivelines enhance the overall safety and stability of vehicles and equipment.
7. Durability and Reliability: Drivelines are built to withstand harsh operating conditions and provide long-term durability and reliability. They are engineered with high-quality materials, precise manufacturing processes, and advanced technologies to ensure the driveline components can endure the stresses of power transmission. Well-designed drivelines require minimal maintenance, reducing downtime and enhancing the overall reliability of vehicles and equipment.
8. Specialized Functionality: Drivelines offer specialized functionality for specific types of vehicles and equipment. For example, in off-road vehicles or heavy-duty construction equipment, drivelines with features like differential locks, torque vectoring, or adjustable suspension systems provide enhanced traction, stability, and control. In agricultural machinery, drivelines with power take-off (PTO) units enable the connection of various implements for specific tasks like plowing, seeding, or harvesting. Such specialized driveline features enhance the performance and versatility of vehicles and equipment in their respective applications.
In summary, drivelines provide numerous benefits for different types of vehicles and equipment. They ensure efficient power transmission, facilitate mobility and maneuverability, offer versatility and adaptability, contribute to efficiency and fuel economy, handle heavy loads, enhance safety and control, provide durability and reliability, and offer specialized functionality. By incorporating well-designed drivelines, manufacturers can optimize the performance, productivity, and overall functionality of vehicles and equipment across various industries.
editor by CX 2024-03-13