Tag Archives: farm machinery

China best CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft Drive Line

Product Description

CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft

 

Product Description

 

A Power Take-Off shaft (PTO shaft) is a mechanical device utilized to transmit power from a tractor or other power source to an attached implement, such as a mower, tiller, or baler. Typically situated at the rear of the tractor, the PTO shaft is driven by the tractor’s engine through the transmission.
The primary purpose of the PTO shaft is to supply a rotating power source to the implement, enabling it to carry out its intended function. To connect the implement to the PTO shaft, a universal joint is employed, allowing for movement between the tractor and the implement while maintaining a consistent power transfer. 

Here is our advantages when compare to similar products from China:
1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.

Product Specifications

 

In farming, the most common way to transmit power from a tractor to an implement is by a driveline, connected to the PTO (Power Take Off) of the tractor to the IIC(Implement Input Connection). Drivelines are also commonly connected to shafts within the implement to transmit power to various mechanisms.
The following dimensions of the PTO types are available.
Type B:13/8″Z6(540 min)
Type D:13/8″Z21(1000 min)
Coupling a driveline to a PTO should be quick and simple because in normal use tractors must operate multiple implements. Consequently, yokes on the tractor-end of the driveline are fitted with a quick-disconnect system, such as push-pin or ball collar.
Specifications for a driveline, including the way it is coupled to a PTO, depend CZPT the implement.
Yokes on the llc side are rarely disconnected and may be fastened by quick-lock couplings (push-pin or ball collar).
Taper pins are the most stable connection for splined shafts and are commonly used in yokes and torque limiters. Taper pins are also often used to connect internal drive shafts on drivelines that are not frequently disconnected.
Torque limiter and clutches must always be installed on the implement side of the primary driveline.

 

Packaging & Shipping

 

 

 

Company Profile

HangZhou Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like  Cylinder , Valve ,Gearpump and motor etc..
We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.

FAQ

1.WHAT’S THE PAYMENT TERM?

When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  

2.HOW TO DELIVER THE GOODS TO US?

Usually we will ship the goods to you by sea.

3.HOE LONG IS YOUR DELIVERY TIME AND SHIPMENT?

30-45days.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Pto Shaft
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Agricultural Machinery,Farm Tractor
Material: 45cr Steel
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How do manufacturers ensure the compatibility of driveline components with different vehicles?

Manufacturers employ various measures to ensure the compatibility of driveline components with different vehicles. These measures involve careful design, engineering, testing, and standardization processes to meet the specific requirements of each vehicle type. Let’s explore how manufacturers ensure compatibility:

1. Vehicle-Specific Design:

Manufacturers design driveline components with specific vehicle types in mind. Each vehicle type, such as passenger cars, trucks, SUVs, or commercial vehicles, has unique requirements in terms of power output, torque capacity, weight distribution, space constraints, and intended usage. Manufacturers consider these factors during the component design phase to ensure that the driveline components are optimized for compatibility with the intended vehicle type.

2. Engineering and Simulation:

Manufacturers employ advanced engineering techniques and simulation tools to evaluate the performance and compatibility of driveline components. They use computer-aided design (CAD) software and finite element analysis (FEA) simulations to model and analyze the behavior of the components under various operating conditions. This allows them to identify any potential compatibility issues, such as excessive stress, misalignment, or interference, and make necessary design adjustments before moving to the production stage.

3. Prototyping and Testing:

Manufacturers create prototypes of driveline components and subject them to rigorous testing to ensure compatibility. These tests include bench testing, dynamometer testing, and vehicle-level testing. By simulating real-world operating conditions, manufacturers can evaluate the performance, durability, and compatibility of the components. They assess factors such as power transmission efficiency, torque capacity, heat dissipation, noise and vibration levels, and overall drivability to ensure that the components meet the requirements and are compatible with the intended vehicle.

4. Standardization:

Manufacturers adhere to industry standards and specifications to ensure compatibility and interchangeability of driveline components. These standards cover various aspects such as dimensions, material properties, spline profiles, shaft diameters, and mounting interfaces. By following established standards, manufacturers can ensure that their driveline components can be seamlessly integrated into different vehicles from various manufacturers, promoting compatibility and ease of replacement or upgrade.

5. Collaborative Development:

Manufacturers often collaborate closely with vehicle manufacturers during the development process to ensure compatibility. This collaboration involves sharing specifications, design requirements, and performance targets. By working together, driveline manufacturers can align their component designs with the vehicle manufacturer’s specifications, ensuring that the driveline components fit within the vehicle’s space constraints, mating interfaces, and intended usage. This collaborative approach helps optimize compatibility and integration between the driveline components and the vehicle’s overall system.

6. Continuous Improvement:

Manufacturers continuously improve their driveline components based on feedback, field data, and advancements in technology. They gather information from vehicle manufacturers, end-users, and warranty claims to identify any compatibility issues or performance shortcomings. This feedback loop helps drive refinements and enhancements in the design, manufacturing processes, and material selection of the driveline components, ensuring better compatibility and performance in future iterations.

Overall, manufacturers employ a combination of vehicle-specific design, engineering and simulation, prototyping and testing, standardization, collaborative development, and continuous improvement to ensure the compatibility of driveline components with different vehicles. These efforts help optimize power transmission, reliability, and performance, while ensuring a seamless integration of the driveline components into the diverse range of vehicles present in the market.

pto shaft

Can driveline components be customized for specific vehicle or equipment requirements?

Yes, driveline components can be customized to meet specific vehicle or equipment requirements. Manufacturers and suppliers offer a range of options for customization to ensure optimal performance, compatibility, and integration with different vehicles or equipment. Customization allows for tailoring the driveline components to specific powertrain configurations, operating conditions, torque requirements, and space constraints. Let’s explore the details of customization for driveline components:

1. Powertrain Configuration:

Driveline components can be customized to accommodate different powertrain configurations. Whether it’s a front-wheel drive, rear-wheel drive, or all-wheel drive system, manufacturers can design and provide specific components such as differentials, gearboxes, and drive shafts that are compatible with the required power distribution and torque transfer characteristics of the particular configuration.

2. Torque Capacity:

Driveline components can be customized to handle specific torque requirements. Different vehicles or equipment may have varying torque outputs based on their intended applications. Manufacturers can engineer and produce driveline components with varying torque-handling capabilities to ensure reliable and efficient power transmission for a range of applications, from passenger vehicles to heavy-duty trucks or machinery.

3. Size and Configuration:

Driveline components can be customized in terms of size, shape, and configuration to fit within the space constraints of different vehicles or equipment. Manufacturers understand that each application may have unique packaging limitations, such as limited available space or specific mounting requirements. Through customization, driveline components can be designed and manufactured to align with these specific dimensional and packaging constraints.

4. Material Selection:

The choice of materials for driveline components can be customized based on the required strength, weight, and durability characteristics. Different vehicles or equipment may demand specific material properties to optimize performance, such as lightweight materials for improved fuel efficiency or high-strength alloys for heavy-duty applications. Manufacturers can provide customized driveline components with materials selected to meet the specific performance and operational requirements.

5. Performance Optimization:

Driveline components can be customized to optimize performance in specific applications. Manufacturers can modify aspects such as gear ratios, differential configurations, or clutch characteristics to enhance acceleration, traction, efficiency, or specific performance attributes based on the intended use of the vehicle or equipment. This customization ensures that the driveline components are tailored to deliver the desired performance characteristics for the specific application.

6. Specialized Applications:

For specialized applications, such as off-road vehicles, racing cars, or industrial machinery, driveline components can be further customized to meet the unique demands of those environments. Manufacturers can develop specialized driveline components with features like enhanced cooling, reinforced construction, or increased torque capacity to withstand extreme conditions or heavy workloads.

Overall, customization of driveline components allows manufacturers to meet the specific requirements of different vehicles or equipment. From powertrain configuration to torque capacity, size and configuration, material selection, performance optimization, and specialized applications, customization ensures that driveline components are precisely designed and engineered to achieve the desired performance, compatibility, and integration with specific vehicles or equipment.

pto shaft

What is a driveline and how does it function in vehicles and machinery?

A driveline, also known as a drivetrain, refers to the components and systems responsible for transmitting power from the engine to the wheels or tracks in vehicles and machinery. It encompasses various elements such as the engine, transmission, drive shafts, differentials, axles, and wheels or tracks. The driveline plays a crucial role in converting the engine’s power into motion and enabling the vehicle or machinery to move. Here’s a detailed explanation of how the driveline functions in vehicles and machinery:

1. Power Generation: The driveline starts with the engine, which generates power by burning fuel or utilizing alternative energy sources. The engine produces rotational force, known as torque, which is transferred to the driveline for further transmission to the wheels or tracks.

2. Transmission: The transmission is a crucial component of the driveline that controls the distribution of power and torque from the engine to the wheels or tracks. It allows the driver or operator to select different gear ratios to optimize performance and efficiency based on the vehicle’s speed and load conditions. The transmission can be manual, automatic, or a combination of both, depending on the specific vehicle or machinery.

3. Drive Shaft: The drive shaft, also called a propeller shaft, is a rotating mechanical component that transmits torque from the transmission to the wheels or tracks. In vehicles with rear-wheel drive or four-wheel drive, the drive shaft transfers power to the rear axle or all four wheels. In machinery, the drive shaft may transfer power to the tracks or other driven components. The drive shaft is typically a tubular metal shaft with universal joints at each end to accommodate the movement and misalignment between the transmission and the wheels or tracks.

4. Differential: The differential is a device located in the driveline that enables the wheels or tracks to rotate at different speeds while still receiving power. It allows the vehicle or machinery to smoothly negotiate turns without wheel slippage or binding. The differential consists of a set of gears that distribute torque between the wheels or tracks based on their rotational requirements. In vehicles with multiple axles, there may be differentials on each axle to provide power distribution and torque balancing.

5. Axles: Axles are shafts that connect the differential to the wheels or tracks. They transmit torque from the differential to the individual wheels or tracks, allowing them to rotate and propel the vehicle or machinery. Axles are designed to withstand the loads and stresses associated with power transmission and wheel movement. They may be solid or independent, depending on the vehicle or machinery’s suspension and drivetrain configuration.

6. Wheels or Tracks: The driveline’s final components are the wheels or tracks, which directly contact the ground and provide traction and propulsion. In vehicles with wheels, the driveline transfers power from the engine to the wheels, allowing them to rotate and propel the vehicle forward or backward. In machinery with tracks, the driveline transfers power to the tracks, enabling the machinery to move over various terrains and surfaces.

7. Functioning: The driveline functions by transmitting power from the engine through the transmission, drive shaft, differential, axles, and finally to the wheels or tracks. As the engine generates torque, it is transferred through the transmission, which selects the appropriate gear ratio based on the vehicle’s speed and load. The drive shaft then transfers the torque to the differential, which distributes it between the wheels or tracks according to their rotational requirements. The axles transmit the torque from the differential to the individual wheels or tracks, allowing them to rotate and propel the vehicle or machinery.

8. Four-Wheel Drive and All-Wheel Drive: Some vehicles and machinery are equipped with four-wheel drive (4WD) or all-wheel drive (AWD) systems, which provide power to all four wheels simultaneously. In these systems, the driveline includes additional components such as transfer cases and secondary differentials to distribute power to the front and rear axles. The driveline functions similarly in 4WD and AWD systems, but with enhanced traction and off-road capabilities.

In summary, the driveline is a vital component in vehicles and machinery, responsible for transmitting power from the engine to the wheels or tracks. It involves the engine, transmission, drive shafts, differentials, axles, and wheels or tracks. By efficiently transferring torque and power, the driveline enables vehicles and machinery to move, providing traction, propulsion, and control. The specific configuration and components of the driveline may vary depending on the vehicle or machinery’s design, purpose, and drive system.

China best CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft Drive LineChina best CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft Drive Line
editor by CX 2023-12-21

China factory CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft

Product Description

CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft

 

Product Description

Driveline Adapter Cardan Shaft for Farm Equipment Pto Shaft and Tractor Pto Drive Shaft

A Power Take-Off shaft (PTO shaft) is a mechanical device utilized to transmit power from a tractor or other power source to an attached implement, such as a mower, tiller, or baler. Typically situated at the rear of the tractor, the PTO shaft is driven by the tractor’s engine through the transmission.
The primary purpose of the PTO shaft is to supply a rotating power source to the implement, enabling it to carry out its intended function. To connect the implement to the PTO shaft, a universal joint is employed, allowing for movement between the tractor and the implement while maintaining a consistent power transfer. 

Here is our advantages when compare to similar products from China:
1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.

Product Specifications

 

In farming, the most common way to transmit power from a tractor to an implement is by a driveline, connected to the PTO (Power Take Off) of the tractor to the IIC(Implement Input Connection). Drivelines are also commonly connected to shafts within the implement to transmit power to various mechanisms.
The following dimensions of the PTO types are available.
Type B:13/8″Z6(540 min)
Type D:13/8″Z21(1000 min)
Coupling a driveline to a PTO should be quick and simple because in normal use tractors must operate multiple implements. Consequently, yokes on the tractor-end of the driveline are fitted with a quick-disconnect system, such as push-pin or ball collar.
Specifications for a driveline, including the way it is coupled to a PTO, depend CZPT the implement.
Yokes on the llc side are rarely disconnected and may be fastened by quick-lock couplings (push-pin or ball collar).
Taper pins are the most stable connection for splined shafts and are commonly used in yokes and torque limiters. Taper pins are also often used to connect internal drive shafts on drivelines that are not frequently disconnected.
Torque limiter and clutches must always be installed on the implement side of the primary driveline.

 

Packaging & Shipping

 

 

 

Company Profile

HangZhou Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like  Cylinder , Valve ,Gearpump and motor etc..
We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.

FAQ

1.WHAT’S THE PAYMENT TERM?

When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  

2.HOW TO DELIVER THE GOODS TO US?

Usually we will ship the goods to you by sea.

3.HOE LONG IS YOUR DELIVERY TIME AND SHIPMENT?

30-45days

 

Type: Pto Shaft
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Agricultural Machinery,Farm Tractor
Material: 45cr Steel
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How do manufacturers ensure the compatibility of drive shafts with different equipment?

Manufacturers employ various strategies and processes to ensure the compatibility of drive shafts with different equipment. Compatibility refers to the ability of a drive shaft to effectively integrate and function within a specific piece of equipment or machinery. Manufacturers take into account several factors to ensure compatibility, including dimensional requirements, torque capacity, operating conditions, and specific application needs. Here’s a detailed explanation of how manufacturers ensure the compatibility of drive shafts:

1. Application Analysis:

Manufacturers begin by conducting a thorough analysis of the intended application and equipment requirements. This analysis involves understanding the specific torque and speed demands, operating conditions (such as temperature, vibration levels, and environmental factors), and any unique characteristics or constraints of the equipment. By gaining a comprehensive understanding of the application, manufacturers can tailor the design and specifications of the drive shaft to ensure compatibility.

2. Customization and Design:

Manufacturers often offer customization options to adapt drive shafts to different equipment. This customization involves tailoring the dimensions, materials, joint configurations, and other parameters to match the specific requirements of the equipment. By working closely with the equipment manufacturer or end-user, manufacturers can design drive shafts that align with the equipment’s mechanical interfaces, mounting points, available space, and other constraints. Customization ensures that the drive shaft fits seamlessly into the equipment, promoting compatibility and optimal performance.

3. Torque and Power Capacity:

Drive shaft manufacturers carefully determine the torque and power capacity of their products to ensure compatibility with different equipment. They consider factors such as the maximum torque requirements of the equipment, the expected operating conditions, and the safety margins necessary to withstand transient loads. By engineering drive shafts with appropriate torque ratings and power capacities, manufacturers ensure that the shaft can handle the demands of the equipment without experiencing premature failure or performance issues.

4. Material Selection:

Manufacturers choose materials for drive shafts based on the specific needs of different equipment. Factors such as torque capacity, operating temperature, corrosion resistance, and weight requirements influence material selection. Drive shafts may be made from various materials, including steel, aluminum alloys, or specialized composites, to provide the necessary strength, durability, and performance characteristics. The selected materials ensure compatibility with the equipment’s operating conditions, load requirements, and other environmental factors.

5. Joint Configurations:

Drive shafts incorporate joint configurations, such as universal joints (U-joints) or constant velocity (CV) joints, to accommodate different equipment needs. Manufacturers select and design the appropriate joint configuration based on factors such as operating angles, misalignment tolerances, and the desired level of smooth power transmission. The choice of joint configuration ensures that the drive shaft can effectively transmit power and accommodate the range of motion required by the equipment, promoting compatibility and reliable operation.

6. Quality Control and Testing:

Manufacturers implement stringent quality control processes and testing procedures to verify the compatibility of drive shafts with different equipment. These processes involve conducting dimensional inspections, material testing, torque and stress analysis, and performance testing under simulated operating conditions. By subjecting drive shafts to rigorous quality control measures, manufacturers can ensure that they meet the required specifications and performance criteria, guaranteeing compatibility with the intended equipment.

7. Compliance with Standards:

Manufacturers ensure that their drive shafts comply with relevant industry standards and regulations. Compliance with standards, such as ISO (International Organization for Standardization) or specific industry standards, provides assurance of quality, safety, and compatibility. Adhering to these standards helps manufacturers meet the expectations and requirements of equipment manufacturers and end-users, ensuring that the drive shafts are compatible and can be seamlessly integrated into different equipment.

8. Collaboration and Feedback:

Manufacturers often collaborate closely with equipment manufacturers, OEMs (Original Equipment Manufacturers), or end-users to gather feedback and incorporate their specific requirements into the drive shaft design and manufacturing processes. This collaborative approach ensures that the drive shafts are compatible with the intended equipment and meet the expectations of the end-users. By actively seeking input and feedback, manufacturers can continuously improve their products’ compatibility and performance.

In summary, manufacturers ensure the compatibility of drive shafts with different equipment through a combination of application analysis, customization, torque and power capacity considerations, material selection, joint configurations, quality control and testing, compliance with standards, and collaboration with equipment manufacturers and end-users. These efforts enable manufacturers to design and produce drive shafts that seamlessly integrate with various equipment, ensuring optimal performance, reliability, and compatibility in different applications.

pto shaft

Can drive shafts be customized for specific vehicle or equipment requirements?

Yes, drive shafts can be customized to meet specific vehicle or equipment requirements. Customization allows manufacturers to tailor the design, dimensions, materials, and other parameters of the drive shaft to ensure compatibility and optimal performance within a particular vehicle or equipment. Here’s a detailed explanation of how drive shafts can be customized:

1. Dimensional Customization:

Drive shafts can be customized to match the dimensional requirements of the vehicle or equipment. This includes adjusting the overall length, diameter, and spline configuration to ensure proper fitment and clearances within the specific application. By customizing the dimensions, the drive shaft can be seamlessly integrated into the driveline system without any interference or limitations.

2. Material Selection:

The choice of materials for drive shafts can be customized based on the specific requirements of the vehicle or equipment. Different materials, such as steel alloys, aluminum alloys, or specialized composites, can be selected to optimize strength, weight, and durability. The material selection can be tailored to meet the torque, speed, and operating conditions of the application, ensuring the drive shaft’s reliability and longevity.

3. Joint Configuration:

Drive shafts can be customized with different joint configurations to accommodate specific vehicle or equipment requirements. For example, universal joints (U-joints) may be suitable for applications with lower operating angles and moderate torque demands, while constant velocity (CV) joints are often used in applications requiring higher operating angles and smoother power transmission. The choice of joint configuration depends on factors such as operating angle, torque capacity, and desired performance characteristics.

4. Torque and Power Capacity:

Customization allows drive shafts to be designed with the appropriate torque and power capacity for the specific vehicle or equipment. Manufacturers can analyze the torque requirements, operating conditions, and safety margins of the application to determine the optimal torque rating and power capacity of the drive shaft. This ensures that the drive shaft can handle the required loads without experiencing premature failure or performance issues.

5. Balancing and Vibration Control:

Drive shafts can be customized with precision balancing and vibration control measures. Imbalances in the drive shaft can lead to vibrations, increased wear, and potential driveline issues. By employing dynamic balancing techniques during the manufacturing process, manufacturers can minimize vibrations and ensure smooth operation. Additionally, vibration dampers or isolation systems can be integrated into the drive shaft design to further mitigate vibrations and enhance overall system performance.

6. Integration and Mounting Considerations:

Customization of drive shafts takes into account the integration and mounting requirements of the specific vehicle or equipment. Manufacturers work closely with the vehicle or equipment designers to ensure that the drive shaft fits seamlessly into the driveline system. This includes adapting the mounting points, interfaces, and clearances to ensure proper alignment and installation of the drive shaft within the vehicle or equipment.

7. Collaboration and Feedback:

Manufacturers often collaborate with vehicle manufacturers, OEMs (Original Equipment Manufacturers), or end-users to gather feedback and incorporate their specific requirements into the drive shaft customization process. By actively seeking input and feedback, manufacturers can address specific needs, optimize performance, and ensure compatibility with the vehicle or equipment. This collaborative approach enhances the customization process and results in drive shafts that meet the exact requirements of the application.

8. Compliance with Standards:

Customized drive shafts can be designed to comply with relevant industry standards and regulations. Compliance with standards, such as ISO (International Organization for Standardization) or specific industry standards, ensures that the customized drive shafts meet quality, safety, and performance requirements. Adhering to these standards provides assurance that the drive shafts are compatible and can be seamlessly integrated into the specific vehicle or equipment.

In summary, drive shafts can be customized to meet specific vehicle or equipment requirements through dimensional customization, material selection, joint configuration, torque and power capacity optimization, balancing and vibration control, integration and mounting considerations, collaboration with stakeholders, and compliance with industry standards. Customization allows drive shafts to be precisely tailored to the needs of the application, ensuring compatibility, reliability, and optimal performance.

pto shaft

How do drive shafts contribute to transferring rotational power in various applications?

Drive shafts play a crucial role in transferring rotational power from the engine or power source to the wheels or driven components in various applications. Whether it’s in vehicles or machinery, drive shafts enable efficient power transmission and facilitate the functioning of different systems. Here’s a detailed explanation of how drive shafts contribute to transferring rotational power:

1. Vehicle Applications:

In vehicles, drive shafts are responsible for transmitting rotational power from the engine to the wheels, enabling the vehicle to move. The drive shaft connects the gearbox or transmission output shaft to the differential, which further distributes the power to the wheels. As the engine generates torque, it is transferred through the drive shaft to the wheels, propelling the vehicle forward. This power transfer allows the vehicle to accelerate, maintain speed, and overcome resistance, such as friction and inclines.

2. Machinery Applications:

In machinery, drive shafts are utilized to transfer rotational power from the engine or motor to various driven components. For example, in industrial machinery, drive shafts may be used to transmit power to pumps, generators, conveyors, or other mechanical systems. In agricultural machinery, drive shafts are commonly employed to connect the power source to equipment such as harvesters, balers, or irrigation systems. Drive shafts enable these machines to perform their intended functions by delivering rotational power to the necessary components.

3. Power Transmission:

Drive shafts are designed to transmit rotational power efficiently and reliably. They are capable of transferring substantial amounts of torque from the engine to the wheels or driven components. The torque generated by the engine is transmitted through the drive shaft without significant power losses. By maintaining a rigid connection between the engine and the driven components, drive shafts ensure that the power produced by the engine is effectively utilized in performing useful work.

4. Flexible Coupling:

One of the key functions of drive shafts is to provide a flexible coupling between the engine/transmission and the wheels or driven components. This flexibility allows the drive shaft to accommodate angular movement and compensate for misalignment between the engine and the driven system. In vehicles, as the suspension system moves or the wheels encounter uneven terrain, the drive shaft adjusts its length and angle to maintain a constant power transfer. This flexibility helps prevent excessive stress on the drivetrain components and ensures smooth power transmission.

5. Torque and Speed Transmission:

Drive shafts are responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). Drive shafts must be capable of handling the torque requirements of the application without excessive twisting or bending. Additionally, they need to maintain the desired rotational speed to ensure the proper functioning of the driven components. Proper design, material selection, and balancing of the drive shafts contribute to efficient torque and speed transmission.

6. Length and Balance:

The length and balance of drive shafts are critical factors in their performance. The length of the drive shaft is determined by the distance between the engine or power source and the driven components. It should be appropriately sized to avoid excessive vibrations or bending. Drive shafts are carefully balanced to minimize vibrations and rotational imbalances, which can affect the overall performance, comfort, and longevity of the drivetrain system.

7. Safety and Maintenance:

Drive shafts require proper safety measures and regular maintenance. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts, reducing the risk of injury. Safety shields or guards may also be installed around exposed drive shafts in machinery to protect operators from potential hazards. Regular maintenance includes inspecting the drive shaft for wear, damage, or misalignment, and ensuring proper lubrication of the U-joints. These measures help prevent failures, ensure optimal performance, and extend the service life of the drive shaft.

In summary, drive shafts play a vital role in transferring rotational power in various applications. Whether in vehicles or machinery, drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. They provide a flexible coupling, handle torque and speed transmission, accommodate angular movement, and contribute to the safety and maintenance of the system. By effectively transferring rotational power, drive shafts facilitate the functioning and performance of vehicles and machinery in numerous industries.

China factory CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft  China factory CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft
editor by CX 2023-11-18

China Hot selling Farm Machinery Replacement Components Die Forging Driveline Driveshaft

Product Description

1
Products 
Name:  Farm machinery replacement components die forging driveline driveshaft
Material: 40CrMo
Weight: From .2kg-5kg
Packing: wooden case
Min order: 1000pcs
Customized production is available as your drawings or sample. 
 

Process Die Forging
Material Stainless Steel, Carbon Steel, Alloy Steel 
Weight 0.1Kg~20Kg
Heat Treatment Quenching, Annealing,Tempering,Normalizing, Quenching and Tempering
Testing instrument  composition testing Spectrometer, Metallographic microscope
Performance testing Hardness tester, Tensile testing machine
Size Measuring  CMM,Micrometer, Vernier Caliper, Depth Caliper, feeler gauge
Thread Gauge , Height Gauge
Roughness Ra1.6~Ra6.3
Machining Equipment CNC Center , CNC Machines, Turning, Drilling, Milling, boring machine,Grinding Machines,
Wire EDM,Laser Cutting&Welding, Plasma Cutting &Welding, EDM etc.
Quality control Sampling inspection of raw materials and semi-finished products, 100% Inspection of finished products  
Surface Treatment Shot Blast ,  Powder Coating, Polishing, Galvanized , Chrome Plated   
Production Capacity 60000T / Years
Lead Time Normally 30 – 45 Days.
Payment Terms T/T , L/C 
Material Standard ASTM , AISI , DIN , BS, JIS, GB,
Certification ISO9001:2008, IATF16949:2016

2
 Products Quality Control
Quality control involve the inspection and control of incoming materials, production processes, and finished products.
The quality control process includes,
1 First of all, the incoming raw materials with random sampling are analyzed by metallographic microscope to ensure that the chemical composition meets the production requirements
2 Then In the production process, there are QC staffs timely sampling ensure that the products are free of defects in the manufacturing process, and to coordinate and handle any abnormal quality issues may be occurred.
3 The final step of production process is magnetic particle flaw detector of the metal parts to detect it’s hidden crack or other defects.
4 All the finished metal parts is sampled in proportion and sent to the laboratory for various mechanical performance tests and size measurement, and the surface quality is manually 100%  inspected.
The relevant testing equipment pictures are as following:

3
Quality Management System Control:
We strictly carry out system management accordance with iso9001 and ts16949 quality standards. And 5S lean production management is implemented on the production site.
The production management site as following:

4
Our Advantages:
 Brand
Our parent company, HiHangZhou Group, is a world-renowned high-end machinery manufacturing enterprise with 40 domestic subsidiaries and branches and 8 foreign manufacturing plants. Has long-term experience and good reputation in cooperation with world-renowned enterprises.
Technology
We have a complete production process and equipment research and development capabilities for ferrous metals forming. More than 25 years of production experience in forging equipment and casting equipment manufacturers, make us more thoroughly get  all the performance of each equipment. One-third of our company’s employees are technician and R&D personnel, ensuring that high-quality products are produced with high efficiency.
Service
We can provide custom and standard manufacturing services with multiple manufacturing process integrations. The quality and delivery of products can be fully guaranteed, and the ability to communicate quickly and effectively.
Culture
The unique corporate culture can give full play to the potential of individuals and  provide a strong vitality for the sustainable development of the company.
Social responsibility
Our company strictly implements low-carbon environmental protection, energy-saving and emission-reduction production, and is a benchmark enterprise in local region.

5
Company Culture 

Our Vision
To become 1 of the leading companies

Our Mission
To become a platform for employees to realize their dream
To become 1 of the transforming and upgrading pacemaker of Chinese enterprises
To set the national brands with pride

Our Belief
Strive to build the company into an ideal platform for entrepreneurs to realize their self-worth and contribute to the society

Values
Improvement is innovation, everyone can innovate
innovation inspired and failures tolerated

6
FAQ
1.
Q:  Are you a trading company or a manufacturer?
A:  Obviously we are a manufacturer of forging products, casting products and also have a high level of machining capabilities.

2.
Q:  What series products do your have?
A:  We are mainly engaged in forming processing of ferrous metals, including processing by casting , forging and machining. As you know, such machinery parts can be observed in various industries of equipment manufacturing.

3
Q:  Do you provide samples? is it free?
A:  Yes, we commonly provide samples according to the traditional practice, but we also need customers to provide a freight pay-by-account number to show mutual CZPT of cooperation.

4
Q:  Is OEM available?
A:  Yes, OEM is available.

5
Q:  What’s your quality guarantee?
A: We insist that the survival of the company should depend on the products quality continuous improvement, without which we cannot survive for long. We carry out strictly product quality control for every process from incoming materials, production process to finished products via advanced detection instrument and equipment. We also invite independent third parties to certify our quality and management systems. Till now we have passed ISO/TS16949 and SGS certification .

6
Q.  How  about  the  Packing?
A: We usually use the iron box, or wooden case, also it can be customized according to customer’s demands.

7
Q:  What is your minimum order quantity?
A:  Yes, we require all international orders to have an minimum order quantity. The quantity is up to the exact products feature or property such as the material, weight, construction etc.

8
Q:  What is the lead time?
A:  Generally our forging products and casting products need to make new dies or molds, the time of making new dies or molds and samples within 30-45 days, and the large batch production time within 30-45 days. it’s also according to the parts structural complexity and quantity.

9
Q: What kinds of payment methods do you accept?
A: You can make the payment by T/T or L/C. 30% deposit in advance, 70% balance against the copy of B/L.

Certification

 

Processing Object: Metal
Molding Style: Forging
Molding Technics: Pressure Casting
Application: Agricultural Machinery Parts
Material: Steel
Heat Treatment: Tempering
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What factors should be considered when selecting the right drive shaft for an application?

When selecting the right drive shaft for an application, several factors need to be considered. The choice of drive shaft plays a crucial role in ensuring efficient and reliable power transmission. Here are the key factors to consider:

1. Power and Torque Requirements:

The power and torque requirements of the application are essential considerations. It is crucial to determine the maximum torque that the drive shaft will need to transmit without failure or excessive deflection. This includes evaluating the power output of the engine or power source, as well as the torque demands of the driven components. Selecting a drive shaft with the appropriate diameter, material strength, and design is essential to ensure it can handle the expected torque levels without compromising performance or safety.

2. Operating Speed:

The operating speed of the drive shaft is another critical factor. The rotational speed affects the dynamic behavior of the drive shaft, including the potential for vibration, resonance, and critical speed limitations. It is important to choose a drive shaft that can operate within the desired speed range without encountering excessive vibrations or compromising the structural integrity. Factors such as the material properties, balance, and critical speed analysis should be considered to ensure the drive shaft can handle the required operating speed effectively.

3. Length and Alignment:

The length and alignment requirements of the application must be considered when selecting a drive shaft. The distance between the engine or power source and the driven components determines the required length of the drive shaft. In situations where there are significant variations in length or operating angles, telescopic drive shafts or multiple drive shafts with appropriate couplings or universal joints may be necessary. Proper alignment of the drive shaft is crucial to minimize vibrations, reduce wear and tear, and ensure efficient power transmission.

4. Space Limitations:

The available space within the application is an important factor to consider. The drive shaft must fit within the allocated space without interfering with other components or structures. It is essential to consider the overall dimensions of the drive shaft, including length, diameter, and any additional components such as joints or couplings. In some cases, custom or compact drive shaft designs may be required to accommodate space limitations while maintaining adequate power transmission capabilities.

5. Environmental Conditions:

The environmental conditions in which the drive shaft will operate should be evaluated. Factors such as temperature, humidity, corrosive agents, and exposure to contaminants can impact the performance and lifespan of the drive shaft. It is important to select materials and coatings that can withstand the specific environmental conditions to prevent corrosion, degradation, or premature failure of the drive shaft. Special considerations may be necessary for applications exposed to extreme temperatures, water, chemicals, or abrasive substances.

6. Application Type and Industry:

The specific application type and industry requirements play a significant role in drive shaft selection. Different industries, such as automotive, aerospace, industrial machinery, agriculture, or marine, have unique demands that need to be addressed. Understanding the specific needs and operating conditions of the application is crucial in determining the appropriate drive shaft design, materials, and performance characteristics. Compliance with industry standards and regulations may also be a consideration in certain applications.

7. Maintenance and Serviceability:

The ease of maintenance and serviceability should be taken into account. Some drive shaft designs may require periodic inspection, lubrication, or replacement of components. Considering the accessibility of the drive shaft and associated maintenance requirements can help minimize downtime and ensure long-term reliability. Easy disassembly and reassembly of the drive shaft can also be beneficial for repair or component replacement.

By carefully considering these factors, one can select the right drive shaft for an application that meets the power transmission needs, operating conditions, and durability requirements, ultimately ensuring optimal performance and reliability.

pto shaft

How do drive shafts contribute to the efficiency of vehicle propulsion and power transmission?

Drive shafts play a crucial role in the efficiency of vehicle propulsion and power transmission systems. They are responsible for transferring power from the engine or power source to the wheels or driven components. Here’s a detailed explanation of how drive shafts contribute to the efficiency of vehicle propulsion and power transmission:

1. Power Transfer:

Drive shafts transmit power from the engine or power source to the wheels or driven components. By efficiently transferring rotational energy, drive shafts enable the vehicle to move forward or drive the machinery. The design and construction of drive shafts ensure minimal power loss during the transfer process, maximizing the efficiency of power transmission.

2. Torque Conversion:

Drive shafts can convert torque from the engine or power source to the wheels or driven components. Torque conversion is necessary to match the power characteristics of the engine with the requirements of the vehicle or machinery. Drive shafts with appropriate torque conversion capabilities ensure that the power delivered to the wheels is optimized for efficient propulsion and performance.

3. Constant Velocity (CV) Joints:

Many drive shafts incorporate Constant Velocity (CV) joints, which help maintain a constant speed and efficient power transmission, even when the driving and driven components are at different angles. CV joints allow for smooth power transfer and minimize vibration or power losses that may occur due to changing operating angles. By maintaining constant velocity, drive shafts contribute to efficient power transmission and improved overall vehicle performance.

4. Lightweight Construction:

Efficient drive shafts are often designed with lightweight materials, such as aluminum or composite materials. Lightweight construction reduces the rotational mass of the drive shaft, which results in lower inertia and improved efficiency. Reduced rotational mass enables the engine to accelerate and decelerate more quickly, allowing for better fuel efficiency and overall vehicle performance.

5. Minimized Friction:

Efficient drive shafts are engineered to minimize frictional losses during power transmission. They incorporate features such as high-quality bearings, low-friction seals, and proper lubrication to reduce energy losses caused by friction. By minimizing friction, drive shafts enhance power transmission efficiency and maximize the available power for propulsion or operating other machinery.

6. Balanced and Vibration-Free Operation:

Drive shafts undergo dynamic balancing during the manufacturing process to ensure smooth and vibration-free operation. Imbalances in the drive shaft can lead to power losses, increased wear, and vibrations that reduce overall efficiency. By balancing the drive shaft, it can spin evenly, minimizing vibrations and optimizing power transmission efficiency.

7. Maintenance and Regular Inspection:

Proper maintenance and regular inspection of drive shafts are essential for maintaining their efficiency. Regular lubrication, inspection of joints and components, and prompt repair or replacement of worn or damaged parts help ensure optimal power transmission efficiency. Well-maintained drive shafts operate with minimal friction, reduced power losses, and improved overall efficiency.

8. Integration with Efficient Transmission Systems:

Drive shafts work in conjunction with efficient transmission systems, such as manual, automatic, or continuously variable transmissions. These transmissions help optimize power delivery and gear ratios based on driving conditions and vehicle speed. By integrating with efficient transmission systems, drive shafts contribute to the overall efficiency of the vehicle propulsion and power transmission system.

9. Aerodynamic Considerations:

In some cases, drive shafts are designed with aerodynamic considerations in mind. Streamlined drive shafts, often used in high-performance or electric vehicles, minimize drag and air resistance to improve overall vehicle efficiency. By reducing aerodynamic drag, drive shafts contribute to the efficient propulsion and power transmission of the vehicle.

10. Optimized Length and Design:

Drive shafts are designed to have optimal lengths and designs to minimize energy losses. Excessive drive shaft length or improper design can introduce additional rotational mass, increase bending stresses, and result in energy losses. By optimizing the length and design, drive shafts maximize power transmission efficiency and contribute to improved overall vehicle efficiency.

Overall, drive shafts contribute to the efficiency of vehicle propulsion and power transmission through effective power transfer, torque conversion, utilization of CV joints, lightweight construction, minimized friction, balanced operation, regular maintenance, integration with efficient transmission systems, aerodynamic considerations, and optimized length and design. By ensuring efficient power delivery and minimizing energy losses, drive shafts play a significant role in enhancing the overall efficiency and performance of vehicles and machinery.

pto shaft

How do drive shafts contribute to transferring rotational power in various applications?

Drive shafts play a crucial role in transferring rotational power from the engine or power source to the wheels or driven components in various applications. Whether it’s in vehicles or machinery, drive shafts enable efficient power transmission and facilitate the functioning of different systems. Here’s a detailed explanation of how drive shafts contribute to transferring rotational power:

1. Vehicle Applications:

In vehicles, drive shafts are responsible for transmitting rotational power from the engine to the wheels, enabling the vehicle to move. The drive shaft connects the gearbox or transmission output shaft to the differential, which further distributes the power to the wheels. As the engine generates torque, it is transferred through the drive shaft to the wheels, propelling the vehicle forward. This power transfer allows the vehicle to accelerate, maintain speed, and overcome resistance, such as friction and inclines.

2. Machinery Applications:

In machinery, drive shafts are utilized to transfer rotational power from the engine or motor to various driven components. For example, in industrial machinery, drive shafts may be used to transmit power to pumps, generators, conveyors, or other mechanical systems. In agricultural machinery, drive shafts are commonly employed to connect the power source to equipment such as harvesters, balers, or irrigation systems. Drive shafts enable these machines to perform their intended functions by delivering rotational power to the necessary components.

3. Power Transmission:

Drive shafts are designed to transmit rotational power efficiently and reliably. They are capable of transferring substantial amounts of torque from the engine to the wheels or driven components. The torque generated by the engine is transmitted through the drive shaft without significant power losses. By maintaining a rigid connection between the engine and the driven components, drive shafts ensure that the power produced by the engine is effectively utilized in performing useful work.

4. Flexible Coupling:

One of the key functions of drive shafts is to provide a flexible coupling between the engine/transmission and the wheels or driven components. This flexibility allows the drive shaft to accommodate angular movement and compensate for misalignment between the engine and the driven system. In vehicles, as the suspension system moves or the wheels encounter uneven terrain, the drive shaft adjusts its length and angle to maintain a constant power transfer. This flexibility helps prevent excessive stress on the drivetrain components and ensures smooth power transmission.

5. Torque and Speed Transmission:

Drive shafts are responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). Drive shafts must be capable of handling the torque requirements of the application without excessive twisting or bending. Additionally, they need to maintain the desired rotational speed to ensure the proper functioning of the driven components. Proper design, material selection, and balancing of the drive shafts contribute to efficient torque and speed transmission.

6. Length and Balance:

The length and balance of drive shafts are critical factors in their performance. The length of the drive shaft is determined by the distance between the engine or power source and the driven components. It should be appropriately sized to avoid excessive vibrations or bending. Drive shafts are carefully balanced to minimize vibrations and rotational imbalances, which can affect the overall performance, comfort, and longevity of the drivetrain system.

7. Safety and Maintenance:

Drive shafts require proper safety measures and regular maintenance. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts, reducing the risk of injury. Safety shields or guards may also be installed around exposed drive shafts in machinery to protect operators from potential hazards. Regular maintenance includes inspecting the drive shaft for wear, damage, or misalignment, and ensuring proper lubrication of the U-joints. These measures help prevent failures, ensure optimal performance, and extend the service life of the drive shaft.

In summary, drive shafts play a vital role in transferring rotational power in various applications. Whether in vehicles or machinery, drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. They provide a flexible coupling, handle torque and speed transmission, accommodate angular movement, and contribute to the safety and maintenance of the system. By effectively transferring rotational power, drive shafts facilitate the functioning and performance of vehicles and machinery in numerous industries.

China Hot selling Farm Machinery Replacement Components Die Forging Driveline Driveshaft  China Hot selling Farm Machinery Replacement Components Die Forging Driveline Driveshaft
editor by CX 2023-10-27

in Bellary India sales price shop near me near me shop factory supplier 2 Rows Farm Machinery for Tractor Potato Digger manufacturer best Cost Custom Cheap wholesaler

  in Bellary India  sales   price   shop   near me   near me shop   factory   supplier 2 Rows Farm Machinery for Tractor Potato Digger manufacturer   best   Cost   Custom   Cheap   wholesaler

PersonnelOur sales people are well educated to accommodate your requests and speak English for your usefulness. Far more importantly, we make special parts according to supplied drawings/samples and warmly welcome OEM inquiries. It has recognized steady cooperation with a lot of nicely known universities and institutes in china this kind of as, Zhejiang University, Jilin University, Technical committee of national chain generate standard, Institute of national chain generate, Zhejiang software engineering material institute, Huhan material security institute and it cooperated to located China Very first Vehicle chain institute with Countrywide chain generate institute.
Solution description

EPTT EPT 2 Row Potato Digger for Tn Tractor is EPTTly created by HangEPT Hengshing EPTTry EPTT,Ltd. which is the farm EPTTries supplier for XiHu (West EPT) Dis.hu (West EPT) Dis., SJH, BOMR, ShuHe, DF, LOVO, JM, YTO, TS, WU ZHENG, TN, XiHu (West EPT) Dis.HU (WEST LAKE) DIS. EPTT. It is mounted with the tractor of 12-60hp with again EPTT and aspect EPTT output shaft. Our tractor potato harvester is meant for potato excavation , tubers partial separation from the soil and tubers laying on subject area for their even more finding up. A triangular beater is set on the potato harvester. The operating theory of this potato digger is that the digging shovel digs up the soil and crops via the impetus of the tractor. And the digging shovel make crop and soil separate though vibration sieve, the soil very first drip down from the clearance of vibration sieve, ultimately the crop crashed down on to the highway from the back.

Advantages

1) It is a tractor mounted potato harvester for 20-80hp tractor.
two) Dig the potatoes properly with out chopping or damaging single potato.
3) Not to influence the subsequent crop’s expansion.
four) Pushed by PTO in rotating velocity 540r/min.

EPTnical parameter

Model Unit 4U-1 4U-two
EPTing rows one two
Functioning width mm 600 900/1300/1500
Functioning depth mm 100-250
PTO PTO Rotation speed r/min 540-720
PTO PTO shaft spline six spline
Total excess weight kg a hundred and sixty 260/335/390
Matched EPTT hp 20-thirty 40/50/70
EPTage I Three-level suspension I type IIThree-stage suspension II variety

Item present

FAQ

Q1: Are you a factory or buying and selling firm?
We are a manufacturing unit with self-supported EPTT and export proper.
Q2: How can I EPTT on your firm?
We are a entirely registered manufacture and exporting organization by EPTT Export EPTtration Authorities. Additionally, our items have been exporting to a number of nations incXiHu (West EPT) Dis.Hu (West EPT) Dis. Switzerland, Russia, Spain, Netherlands, Australia, Peru, TEPTTd, Pakistan, Indonesia, EPTTnzania, Nigeria, South Africa, Sudan, Congo and many others. The very good religion, punctual, rigid high quality control and affordable value, all through is the pledge we to each consumer.
Q3: In which is your manufacturing facility located? How can I pay a visit to there?
Our manufacturing facility is located in HangEPT EPTT, ZheJiang Province, EPTT. About 1 hour absent from EPTEPTTn Airport. All our consumers are warmly welcomed to go to us!
This fall: How can I location an orEPTTfrom your internet site?
It is really simple.Once you discover the apply you need to have on our site and spot an inquiry from it, or, get to the inquiry EPT and leave us a message there with title, nation and telephone quantity, we will get in touch with you at the earliest. You can also e-mail us right or join us on dwell chat for instantaneous answers.
Q5: How can I make the payment?
Payment is created via Telegraphic Transfer (T/T) by means of the bank from the proforma invoice.
thirty% as prepayment and the harmony when the items are completely ready for delivery.
Irrevocable L/C at sigEPTT could be also recognized.
Q6: What’s the Payment terms?
FOB, the cost of the apply without sea shipment EPTs. CIF, incXiHu (West EPT) Dis.Hu (West EPT) Dis. the unit EPT maritime insurance coverage Cargo costs to your destination port. CFR, incXiHu (West EPT) Dis.Hu (West EPT) Dis. the unit EPT Cargo expenses to your location port.
Q7: At which port do you usually ship the good?
We usually ship merchandise by means of EPTTngdao, ZheJiang , HangEPT, TianEPTT port of EPTT.
Q8. How about the Warranty ?
twelve months warranty from the time of the merchandise arrive at vacation spot.

Major Functions for YCHS EPTTRY

one) Many a long time of production expenrience in the discipline of EPTT EPTTries.
2) Expert engineers and test equipments to make certain the good quality of every EPTT.
3) Manufacturing facility direct selling at aggressive charges.
4) Very good parts assembled, strictly quality manage method.
five) Compact construction, gorgeous appearance,small quantity, light weight, gasoline consumption is low, the EPTT is wonderful
6) Start practical effortless, lower sound,tiny vibration,easy procedure,dependable overall performance.
seven) OEM welcome, modest buy suitable, ample source and prompt shipping.

Competitive Rewards For YCHS EPTTRY

one) Most sorts of designs, EPTd EPT, EPTT efficiency lifestyle.
two) We are company and we have our own export correct.
3) EPT top quality, competitive price tag amp great following-sales support.
four) EPTT exporting historical past to several nations around the world, good customer comments from abroad.
five) We can provide sample, and also all the spare areas.
six) As your design for the package and brand names

one) YCHS MACHIERY is a manufacturer, have personal factories.
2) The most significant positive aspects: Best good quality, Aggressive price tag amp Excellent following-product sales service

Leading top quality, Aggressive price, Very good right after-product sales provider quot is our a few large advantage.
Welcome to contact us at any instant, sincerely hope can have cooperation with you !

  in Bellary India  sales   price   shop   near me   near me shop   factory   supplier 2 Rows Farm Machinery for Tractor Potato Digger manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Bellary India  sales   price   shop   near me   near me shop   factory   supplier 2 Rows Farm Machinery for Tractor Potato Digger manufacturer   best   Cost   Custom   Cheap   wholesaler

in Lubango Angola sales price shop near me near me shop factory supplier Ukraine Hot Selling Farm Machinery 1gqn-250 2.5m Width Rotary Tiller Cultivator for 70-110HP Tractor manufacturer best Cost Custom Cheap wholesaler

  in Lubango Angola  sales   price   shop   near me   near me shop   factory   supplier Ukraine Hot Selling Farm Machinery 1gqn-250 2.5m Width Rotary Tiller Cultivator for 70-110HP Tractor manufacturer   best   Cost   Custom   Cheap   wholesaler

Much more importantly, we make unique areas according to supplied drawings/samples and warmly welcome OEM inquiries. We also can style and make non-regular merchandise to fulfill customers’ specific specifications. specialize in power transmission items, CATV products, mechanical seal, hydraulic and Pheumatic, and advertising goods. Ukraine sizzling promoting farm EPTTry 1GQN-250 two.5m width Rotary tiller cultivator for 70-110HP tractor

Primary Functions and Usages:
1GQN sequence Rotary Tiller, is also named Rotary Cultivator, Rotary plough, Rotavator, Rototiller, Rotovator,Rotary tilling EPTT.
It adopts center EPT EPTT method, is mounted with the tractor of 12-180HP,Tractor’s wheel tracks are totally lined
following tillage as the doing work width is a lot broader.
The EPTT top quality is reliable and the doing work overall performance is exceptional,can be used in the dry and paddy subject, and reduce the
working time, laboring and EPT.
The EPTT has the rewards of lower EPT , high operational result, decreasing working time, saving time and labour, etc.

Rotary tiller exhibiting :

Rotary tiller EPTT and loading container :

EPT high quality Rotary tiller have ISO,CE, PVOC COC, CO and so forth certificates:

Top-rank complex team and Progress R ampD CEPTTr :

Progress Production workshop :

EPTT price will be quoted for you as soon as EPT your Prerequisite !

  in Lubango Angola  sales   price   shop   near me   near me shop   factory   supplier Ukraine Hot Selling Farm Machinery 1gqn-250 2.5m Width Rotary Tiller Cultivator for 70-110HP Tractor manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Lubango Angola  sales   price   shop   near me   near me shop   factory   supplier Ukraine Hot Selling Farm Machinery 1gqn-250 2.5m Width Rotary Tiller Cultivator for 70-110HP Tractor manufacturer   best   Cost   Custom   Cheap   wholesaler

in Libreville Gabon sales price shop near me near me shop factory supplier 4 Wheel Agricultural Machinery 180HP Mini Tractor Farm Tractors manufacturer best Cost Custom Cheap wholesaler

  in Libreville Gabon  sales   price   shop   near me   near me shop   factory   supplier 4 Wheel Agricultural Machinery 180HP Mini Tractor Farm Tractors manufacturer   best   Cost   Custom   Cheap   wholesaler

With comprehensive requirments, we can also build your unique designed merchandise. Fantastic interest has been compensated on environmental protection and power saving. Ever-Energy Team CO., LTD. IS Professional IN Producing ALL Kinds OF MECHANICAL TRANSMISSION AND HYDRAULIC TRANSMISSION LIKE: PLANETARY GEARBOXES, WORM REDUCERS, IN-LINE HELICAL Equipment Velocity REDUCERS, PARALLEL SHAFT HELICAL Equipment REDUCERS, HELICAL BEVEL REDUCERS, HELICAL WORM Equipment REDUCERS, AGRICULTURAL GEARBOXES, TRACTOR GEARBOXES, Vehicle GEARBOXES, PTO Travel SHAFTS, Particular REDUCER & Relevant Gear Elements AND OTHER Relevant Merchandise, SPROCKETS, HYDRAULIC Technique, VACCUM PUMPS, FLUID COUPLING, Gear RACKS, CHAINS, TIMING PULLEYS, UDL Velocity VARIATORS, V PULLEYS, HYDRAULIC CYLINDER, Equipment PUMPS, SCREW AIR COMPRESSORS, SHAFT COLLARS Low BACKLASH WORM REDUCERS AND SO ON. EPTT EPTTihong Brand 30hp-260hp Strolling Wheel EPTT Garden farm Tractor
Manufacturing facility Adress:West,baotong avenue of the weiEPTT,ZheJiang province,china

Attribute
(1) Immediate EPT diesel engine, gasoline-successful and sturdy great maintenance
(2) Twin phase clutch,16F 8R EPTshift, flat deck offered,simple to run
(three) Adopt EPT motor, EPTT renowned diesel motor, good quality assurance
(four)Rear a few-position suspension, multi way valve, outfitted all varieties of the farm implement
(5)Streamlined design, novel and gorgeous visual appeal

Merchandise Parameters

Main EPTnical Data of TH1804 Tractor
Tractor parameters Model No TH1804
Variety 4 X 4 wheeled EPT
L x W x H(mm) 5120 X 2380 X 3100
Wheel base(mm) 2630
Front wheel tread(mm) 1760,1860,1960,2060(phase adjustable)
Rear wheel tread(mm) 1700-1940(stepless adjustable)
Min ground clearance 470mm
Dry mass(kg) 5250
EPTT 14” LUKE clutch,Dry sort double motion continuously connecting
Steering Cycloidal rotary valve sort total EPT steering
EPTT box 16f 8r shifts
Cabin Luxurious cabin with heater amp fan
Motor information Motor model WEICEPTI
Engine design WP6G180E330
Motor type Inline,cooled drinking water,4 stroke
Motor Rated EPTT 132.5kw
Engine Rated velocity 2200(r/min)
Gas diesel
Tyre Entrance Tyre 14.nine-26 flat tyre
Rear Tyre eighteen.4-38 flat tyre
PTO Suspension type Rear situation,rear a few position suspension class II /III
EPT outlet 3 pairs
Pto pace 760/850 r/min
Pto change amp spline dimension 38 spline eight tooth
EPT force(N) 31800

EPTT EPTTlements

Rear a few-position suspension, multi way valve, equipped all sorts of the farm apply

We provide all varieties of tractor implements, like front stop loader, backhoe, disc plough, disc hEPT, tiller, cultivator, sprayer, corn soya EPTTer/ seeder, rice transEPTTer, rice harvester, rice mill, potato harvestor, mower, front stop loaEPTTand pbackhoe, snowbrush, hay baler, EPTTer etc. We provide you excellent charges with substantial quality.

EPTT control

Beginning from the source,from casing components to the EPTT procedure management,uality manage on EPTs and finished to maintain
top quality and overall performance constant.

Certification And Honors

We have passed ISO9001, CE, CCC and other global export certification

EPTT Introduction

WeiEPTT EPTTihong Tractor EPTT,Ltd estabEPTTd in 1990, with protection of 206677 square meters, is 1 of the most specialist
tractor company in EPTT. With twenty a long time deveXiHu (West EPT) Dis.Hu (West EPT) Dis.ment, EPTTihong is capable of generating tractor from 25HP to 240HP and
has a big market place share at house and abroad. EPTTihong has its personal foundry, casting, EPTTry processing cEPTTr. Some parts
are manufactured by alone to realize the EPTT high quality control from spare parts.

Services and Warranty:

Pre-income service
one.24 several hours on-line, Any queries about our EPTT will be quickly replied.
2.Optimum layout and selection according to customer’s specifications and setting
3. Welcome to go to our factory and discuss cooperation
Promoting services
1.examination and inspect each tractor carefully and severely
two. EPTnical assistance on frequent troubles, Provide XiHu (West EPT) Dis.Hu (West EPT) Dis.traces and videos on how to use them
three.deliver you the tractor photographs for you ahead of EPTT for your comfimation
Right after-sales support
one. Other than for fragile parts, the EPTT EPTT is certain for a single year
two. Provide 24-hour technical assistance via e-mail/phone
three. We will give you with the parts atlas and set up video clip.

EPTT and Shipping and delivery

Quick Shipping Time ,Skilled Package

FAQ

one. Q: Are you a factory or a trading firm?
We are a professional maker of tractors. It has more than 20 many years of encounter.
2. Q: Can we use our brand or style?
Sure,OEM is welcome any time.we can also offer EPTT tractor product layout.
3. Q:About value
The price tag is negotiable. It can be altered in accordance to tractor optional or package.
4. Q:what’s your payment conditions?
Normally we use T/T, we also accept other payment terms,this kind of as Wstern Uion,Pypal and L/C
5. Q: What is actually your MOQ?
1 established.
6.Q:what is actually the tractor optional areas?
Can be equipped with air EPT,Anti-flap,EPTT,Other motor,Paddy tire,A/C taxi,EPTT tire or your requipment.
seven. Q: How is your following-income services?
A: What is actually incorrect with you, regardless of whether it’s inside the guarantee time period or not? Just give us an e-mail or online video. Our engineers and I are extremely inclined to remedy this issue for you. We have not only large good quality EPTTs, but also very good after-income service.
Seeking EPTT to our cooperation

Make contact with us
Welcome to our Factory
Insisting on procedure tenet of quotgood faith and top quality very first quot, we do our very best to offer best merchandise and EPTT-hearted support. We actively cooperate with study institutes and transnational corporation, in orEPTTto recognize continual innovation. WeiEPTT EPTTiEPTTractor EPTT, Ltd. warmly welcomes domestic and overseas buyers to go to us!!

  in Libreville Gabon  sales   price   shop   near me   near me shop   factory   supplier 4 Wheel Agricultural Machinery 180HP Mini Tractor Farm Tractors manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Libreville Gabon  sales   price   shop   near me   near me shop   factory   supplier 4 Wheel Agricultural Machinery 180HP Mini Tractor Farm Tractors manufacturer   best   Cost   Custom   Cheap   wholesaler

china China best factory manufacturer farm machinery parts cotton picker dust cover for cotton picking machine

china  China best factory manufacturer farm machinery parts  cotton picker dust cover for cotton picking machine

The group is targeted on creating all range of normal roller chains and sprockets, gears & gearboxes, such as conveyor chain & sprockets , stainless metal chain, agricultural chain and has not just marketed its products all more than china, but also sold a lot more than sixty five% items to oversees, like Europe, The united states, South-east Asia, and it also has set up storage logistics in places like Europe.

Overview

Rapid Information

Guarantee:

one.5 years

Applicable Industries:

farms

After Warranty Service:

Video clip technical assistance

Nearby Support Area:

canada, turkey, None

Showroom Spot:

Egypt

Video outgoing-inspection:

Presented

Equipment Check Report:

Offered

Marketing Type:

New Item 2020

Warranty of core factors:

one.5 a long time

Main Parts:

Gearbox, Gear

Essential Offering Points:

long services existence

Merchandise Title:

Water Distributor Include

Software:

Harverster Machine

MOQ:

ten

Shipping and delivery time:

fifteen

material:

stainless metal

brand name:

mianyou

Place of origin:

china

item No.:

SK279986

guarantee:

1.five a long time

Provide Ability

Source Potential:
200000 Piece/Pieces for each Thirty day period

Packaging & Delivery

Packaging Particulars
farm machinery elements cotton picker dust cover for cotton choosing machine

80pcs/interior box , 100 packing containers/MDF box

Port
Shanghai/Ninbo
Lead Time
:
Amount(Baggage) 1 – 5000 >5000
Est. Time(days) 15 To be negotiated

On the web Customization

Item Description

Descriptions farm equipment parts  cotton picker dust protect for cotton finding machine
Merchandise nO. SK279986
Materials stainless steel
Manufacturer Mianyou
Place of Origin ZheJiang China . EPG – one particular of the most significant Agri-Machinery areas manufacturing facility in China /CN

Item Display

 

Relater Merchandise

  

Organization Data

 

Logistics Shipping

one.Q:Are you producer or trade business?Exactly where?

A:We are maker which located in HangZhou,ZheJiang China . EPG – one particular of the most significant Agri-Equipment parts manufacturing unit in China .

 

two.Q:What is your conditions of payment ?

A: Payment=10000USD, fifty% T/T in progress ,equilibrium ahead of cargo. Irrepealable LC at sight for large buy is significant.

 

3.Q:What about shipping time?

A:The supply time relies upon on solution and quantity .If you want to know the exact time. E-mail us the quantity,we will verify the time for you.

 

four.Q:Is the internet site price the closing price?

A:No. All the costs are negotiable depending on the amounts.

 

5.Q:How will you handle solution quality?

A:We strickly handle every depth of creation and every merchandise is inspected by our QC staff prior to supply. Furthermore,our production is abided by ISO 9001.

 

six.Q:When can you get the reply?

A:Any inquiries will be replied inside of 24 hours.Our product sales crew will try our very best to assistance you.