Product Description
Company Profile
—–ABOUT US—–
Focuses on the research, development, production, sales and service of fasteners, precision hardware parts and various metal products.
HangZhou CZPT CZPT Technology Co., Ltd. was established on March 1, 2016. It is located in Xihu (West Lake) Dis.ang District, HangZhou City, ZheJiang Province. It covers an area of 5600 square CZPT and focuses on the research, development, production, sales and service of fasteners, precision hardware parts and various metal products. The processed products are mainly cold heading, forging, precision turning, milling, assembly, stamping, supplemented by extrusion, upsetting and casting. In addition, we also have rich experience in anodizing, electroplating and heat treatment.
Product Parameters
No. | Item | Specifications |
1 | Materials | Carbon steel: 12L15, 45#, 42CrMo; Stainless steel: 303, 304, 316, 420, 630; Aluminum alloy: 6061, 6063, 5052, 7075; Copper alloy: brass H58-H63, phosphor bronze, beryllium copper; Pure copper: T0 oxygen-free copper, T2 red copper; Plastics: nylon, bakelite, POM, PEEK; |
2 | Diameter | Ø0.3-Ø50 |
3 | Diameter tolerance | 0.005mm |
4 | Hardness: | HRC/HV |
5 | Length | 0.5mm-500mm |
6 | Heat treatment | Oil Quenching High frequency quenching Carburization Vacuum Heat treatment Mesh belt CZPT heat treatment |
7 | Surface treatment | Electrolytic plating (barrel plating, rack plating); Electroless plating (nickel plating); Ordinary sandblasting and anodizing (black, silver, gray, gold, red) Plastic spraying, spraying metal paint, etc.; |
Work Shop
Certifications
Research & Development
Development intervention
Development ability
Cost accounting
Quality control
Production feasibility assessment
Project landing
Assembly service
Complex project decomposition & optimization capabilities
Quick sample
Optimization of the mold plan for mass products
Product Category
Precision turning parts
Precision machining parts
Special requirements appearance parts
Presentative Brand
Why Choose Us?
Create value for customers
Support + Service + Made in China + Technological Innovation = Solution
★ Project management, solutions
★ Quickly designing and sampling
★ New product development, technological breakthrough
★ Component and machine assembly service
Engineering capabilities
★Development intervention
★Development ability
Cost accounting
Quality control
Production feasibility assessment
Project landing
Assembly service
★Complex project decomposition & optimization capabilities
★Quick sample
★Optimization of the mold plan for mass products /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Alloy Steel |
---|---|
Load: | Drive Shaft |
Stiffness & Flexibility: | Stiffness / Rigid Axle |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do drivelines ensure optimal power transfer while minimizing energy losses?
Drivelines play a crucial role in ensuring optimal power transfer from the engine to the wheels while minimizing energy losses. The design and components of the driveline system are carefully engineered to maximize efficiency and minimize power wastage. Here are some key factors that contribute to achieving optimal power transfer and minimizing energy losses within a driveline:
1. Efficient Power Transmission:
Drivelines utilize various components, such as transmissions, clutches, and torque converters, to transmit power from the engine to the wheels. These components are designed to minimize energy losses by reducing friction, improving gear mesh efficiency, and optimizing torque transfer. For example, using low-friction materials, such as roller bearings, and employing advanced gear designs, like helical or hypoid gears, can help reduce power losses due to friction and gear meshing.
2. Gear Ratio Optimization:
The selection of appropriate gear ratios is essential for achieving optimal power transfer. By choosing gear ratios that match the engine’s power characteristics and the vehicle’s driving conditions, the driveline can efficiently convert and transmit power to the wheels. Optimized gear ratios ensure that the engine operates within its optimal RPM range, reducing unnecessary power losses and improving overall efficiency.
3. Limited Slip Differentials:
In driveline systems with multiple driven wheels (such as all-wheel drive or four-wheel drive), limited slip differentials (LSDs) are often employed to distribute power between the wheels. LSDs allow for better traction by transferring torque to the wheels with more grip while minimizing energy losses. By allowing some degree of differential wheel speed, LSDs ensure power is efficiently transmitted to the wheels that can utilize it most effectively.
4. Hybrid and Electric Drivetrains:
In hybrid and electric drivetrains, driveline systems are designed to optimize power transfer and minimize energy losses specific to the characteristics of electric motors and energy storage systems. These drivetrains often utilize sophisticated power electronics, regenerative braking systems, and advanced control algorithms to efficiently manage power flow and energy regeneration, resulting in improved overall system efficiency.
5. Aerodynamic Considerations:
Drivelines can also contribute to optimal power transfer by considering aerodynamic factors. By minimizing air resistance through streamlined vehicle designs, efficient cooling systems, and appropriate underbody airflow management, drivelines help reduce the power required to overcome aerodynamic drag. This, in turn, improves overall driveline efficiency and minimizes energy losses.
6. Advanced Control Systems:
The integration of advanced control systems within drivelines allows for optimized power transfer and efficient operation. Electronic control units (ECUs) monitor various parameters such as throttle position, vehicle speed, and driving conditions to adjust power distribution, manage gear shifts, and optimize torque delivery. By continuously adapting to real-time conditions, these control systems help maximize power transfer efficiency and minimize energy losses.
7. Material Selection and Weight Reduction:
The choice of materials and weight reduction strategies in driveline components contribute to minimizing energy losses. Lightweight materials, such as aluminum or composites, reduce the overall weight of the driveline system, resulting in reduced inertia and lower power requirements. Additionally, reducing the weight of rotating components, such as driveshafts or flywheels, helps improve driveline efficiency by minimizing energy losses associated with rotational inertia.
8. Regular Maintenance and Lubrication:
Proper maintenance and lubrication of driveline components are essential for minimizing energy losses. Regular maintenance ensures that driveline components, such as bearings and gears, are in optimal condition, minimizing frictional losses. Additionally, using high-quality lubricants and maintaining appropriate lubrication levels reduces friction and wear, improving driveline efficiency.
By incorporating these design considerations and engineering techniques, drivelines can achieve optimal power transfer while minimizing energy losses. This leads to improved overall efficiency, enhanced fuel economy, and reduced environmental impact.
Can you provide real-world examples of vehicles and machinery that use drivelines?
Drivelines are used in a wide range of vehicles and machinery across various industries. These driveline systems are responsible for transmitting power from the engine or motor to the wheels or driven components. Here are some real-world examples of vehicles and machinery that utilize drivelines:
1. Automobiles:
Drivelines are integral to automobiles, providing power transmission from the engine to the wheels. Various driveline configurations are used, including:
- Front-Wheel Drive (FWD): Many compact cars and passenger vehicles employ front-wheel drive, where the driveline powers the front wheels.
- Rear-Wheel Drive (RWD): Rear-wheel drive is commonly found in sports cars, luxury vehicles, and trucks, with the driveline powering the rear wheels.
- All-Wheel Drive (AWD) and Four-Wheel Drive (4WD): AWD and 4WD drivelines distribute power to all four wheels, enhancing traction and stability. These systems are used in SUVs, off-road vehicles, and performance cars.
2. Trucks and Commercial Vehicles:
Trucks, including pickup trucks, delivery trucks, and heavy-duty commercial vehicles, rely on drivelines to transmit power to the wheels. These drivelines are designed to handle higher torque and load capacities, enabling efficient operation in various work environments.
3. Agricultural Machinery:
Farm equipment, such as tractors, combines, and harvesters, utilize drivelines to transfer power from the engine to agricultural implements and wheels. Drivelines in agricultural machinery are engineered to withstand demanding conditions and provide optimal power delivery for field operations.
4. Construction and Earthmoving Equipment:
Construction machinery, including excavators, bulldozers, loaders, and graders, employ drivelines to power their movement and hydraulic systems. Drivelines in this sector are designed to deliver high torque and endurance for heavy-duty operations in challenging terrains.
5. Off-Road and Recreational Vehicles:
Off-road vehicles, such as ATVs (All-Terrain Vehicles), UTVs (Utility Task Vehicles), and recreational vehicles like dune buggies and sand rails, rely on drivelines to provide power to the wheels. These drivelines are engineered to handle extreme conditions and offer enhanced traction for off-road adventures.
6. Railway Locomotives and Rolling Stock:
Drivelines are utilized in railway locomotives and rolling stock to transmit power from the engines to the wheels. These driveline systems are designed to efficiently transfer high torque and provide reliable propulsion for trains and other rail vehicles.
7. Marine Vessels:
Drivelines are employed in various types of marine vessels, including boats, yachts, and ships. They transmit power from the engines to the propellers or water jets, enabling propulsion through water. Marine drivelines are designed to operate in wet environments and withstand the corrosive effects of saltwater.
8. Industrial Machinery:
Industrial machinery, such as manufacturing equipment, conveyor systems, and material handling machines, often utilize drivelines for power transmission. These drivelines enable the movement of components, products, and materials within industrial settings.
9. Electric and Hybrid Vehicles:
Drivelines are a crucial component in electric vehicles (EVs) and hybrid vehicles (HVs). In these vehicles, the drivelines transmit power from electric motors or a combination of engines and motors to the wheels. Electric drivelines play a significant role in the efficiency and performance of EVs and HVs.
These are just a few examples of vehicles and machinery that utilize drivelines. Driveline systems are essential in a wide range of applications, enabling efficient power transmission and propulsion across various industries.
Which industries and vehicles commonly use drivelines for power distribution?
Drivelines are widely used in various industries and vehicles for power distribution. They play a crucial role in transmitting power from the engine or power source to the driven components, enabling motion and torque transfer. Here’s a detailed explanation of the industries and vehicles that commonly utilize drivelines for power distribution:
1. Automotive Industry: The automotive industry extensively utilizes drivelines in passenger cars, commercial vehicles, and off-road vehicles. Drivelines are a fundamental component of vehicles, enabling power transmission from the engine to the wheels. They are found in a range of vehicle types, including sedans, SUVs, pickup trucks, vans, buses, and heavy-duty trucks. Drivelines in the automotive industry are designed to provide efficient power distribution, enhance vehicle performance, and ensure smooth acceleration and maneuverability.
2. Agricultural Industry: Drivelines are essential in the agricultural industry for various farming machinery and equipment. Tractors, combines, harvesters, and other agricultural machinery rely on drivelines to transfer power from the engine to the wheels or tracks. Drivelines in agricultural equipment often incorporate power take-off (PTO) units, allowing the connection of implements such as plows, seeders, and balers. These drivelines are designed to handle high torque loads, provide traction in challenging field conditions, and facilitate efficient farming operations.
3. Construction and Mining Industries: Drivelines are extensively used in construction and mining equipment, where they enable power distribution and mobility in heavy-duty machinery. Excavators, bulldozers, wheel loaders, dump trucks, and other construction and mining vehicles rely on drivelines to transfer power from the engine to the wheels or tracks. Drivelines in these industries are designed to withstand rigorous operating conditions, deliver high torque and traction, and provide the necessary power for excavation, hauling, and material handling tasks.
4. Industrial Equipment: Various industrial equipment and machinery utilize drivelines for power distribution. This includes material handling equipment such as forklifts and cranes, industrial trucks, conveyor systems, and industrial vehicles used in warehouses, factories, and distribution centers. Drivelines in industrial equipment are designed to provide efficient power transmission, precise control, and maneuverability in confined spaces, enabling smooth and reliable operation in industrial settings.
5. Off-Road and Recreational Vehicles: Drivelines are commonly employed in off-road and recreational vehicles, including all-terrain vehicles (ATVs), side-by-side vehicles (UTVs), dirt bikes, snowmobiles, and recreational boats. These vehicles require drivelines to transfer power from the engine to the wheels, tracks, or propellers, enabling off-road capability, traction, and water propulsion. Drivelines in off-road and recreational vehicles are designed for durability, performance, and enhanced control in challenging terrains and recreational environments.
6. Railway Industry: Drivelines are utilized in railway locomotives and trains for power distribution and propulsion. They are responsible for transmitting power from the locomotive’s engine to the wheels or driving systems, enabling the movement of trains on tracks. Drivelines in the railway industry are designed to handle high torque requirements, ensure efficient power transfer, and facilitate safe and reliable train operation.
7. Marine Industry: Drivelines are integral components in marine vessels, including boats, yachts, ships, and other watercraft. Marine drivelines are used for power transmission from the engine to the propellers or water jets, providing thrust and propulsion. They are designed to withstand the corrosive marine environment, handle high torque loads, and ensure efficient power transfer for marine propulsion.
These are some of the industries and vehicles that commonly rely on drivelines for power distribution. Drivelines are versatile components that enable efficient power transmission, mobility, and performance across a wide range of applications, contributing to the functionality and productivity of various industries and vehicles.
editor by CX 2024-04-30
China factory Turning Milling Precison Part CNC Machining Stepped Stainless Drive Shaft for Medical Drive Line
Product Description
Company Profile
—–ABOUT US—–
Focuses on the research, development, production, sales and service of fasteners, precision hardware parts and various metal products.
HangZhou CZPT CZPT Technology Co., Ltd. was established on March 1, 2016. It is located in Xihu (West Lake) Dis.ang District, HangZhou City, ZheJiang Province. It covers an area of 5600 square CZPT and focuses on the research, development, production, sales and service of fasteners, precision hardware parts and various metal products. The processed products are mainly cold heading, forging, precision turning, milling, assembly, stamping, supplemented by extrusion, upsetting and casting. In addition, we also have rich experience in anodizing, electroplating and heat treatment.
Product Parameters
No. | Item | Specifications |
1 | Materials | Carbon steel: 12L15, 45#, 42CrMo; Stainless steel: 303, 304, 316, 420, 630; Aluminum alloy: 6061, 6063, 5052, 7075; Copper alloy: brass H58-H63, phosphor bronze, beryllium copper; Pure copper: T0 oxygen-free copper, T2 red copper; Plastics: nylon, bakelite, POM, PEEK; |
2 | Diameter | Ø0.3-Ø50 |
3 | Diameter tolerance | 0.005mm |
4 | Hardness: | HRC/HV |
5 | Length | 0.5mm-500mm |
6 | Heat treatment | Oil Quenching High frequency quenching Carburization Vacuum Heat treatment Mesh belt CZPT heat treatment |
7 | Surface treatment | Electrolytic plating (barrel plating, rack plating); Electroless plating (nickel plating); Ordinary sandblasting and anodizing (black, silver, gray, gold, red) Plastic spraying, spraying metal paint, etc.; |
Work Shop
Certifications
Research & Development
Development intervention
Development ability
Cost accounting
Quality control
Production feasibility assessment
Project landing
Assembly service
Complex project decomposition & optimization capabilities
Quick sample
Optimization of the mold plan for mass products
Product Category
Precision turning parts
Precision machining parts
Special requirements appearance parts
Presentative Brand
Why Choose Us?
Create value for customers
Support + Service + Made in China + Technological Innovation = Solution
★ Project management, solutions
★ Quickly designing and sampling
★ New product development, technological breakthrough
★ Component and machine assembly service
Engineering capabilities
★Development intervention
★Development ability
Cost accounting
Quality control
Production feasibility assessment
Project landing
Assembly service
★Complex project decomposition & optimization capabilities
★Quick sample
★Optimization of the mold plan for mass products /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Alloy Steel |
---|---|
Load: | Drive Shaft |
Stiffness & Flexibility: | Stiffness / Rigid Axle |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can drivelines be adapted for use in both automotive and industrial settings?
Drivelines can indeed be adapted for use in both automotive and industrial settings. While there are some differences in the specific requirements and design considerations between these two applications, many fundamental principles and components of drivelines remain applicable to both sectors. Let’s explore how drivelines can be adapted for use in automotive and industrial settings:
1. Power Transmission:
In both automotive and industrial applications, drivelines serve the purpose of transmitting power from a source (such as an engine or motor) to various driven components. The driveline components, including transmissions, clutches, differentials, and shafts, can be adapted and optimized based on the specific power requirements and operating conditions of each application. While automotive drivelines typically focus on delivering power for propulsion, industrial drivelines may transmit power to various machinery and equipment.
2. Gearboxes and Transmissions:
Both automotive and industrial drivelines often incorporate gearboxes or transmissions to provide multiple gear ratios for efficient power transfer. However, the gear ratios and design considerations may differ based on the specific requirements of each application. Automotive drivelines are typically optimized for a wide range of operating conditions, including varying speeds and loads. Industrial drivelines, on the other hand, may be designed to meet specific torque and speed requirements of industrial machinery.
3. Shaft and Coupling Systems:
Shafts and coupling systems are essential components of drivelines in both automotive and industrial settings. They transmit power between different components and allow for misalignment compensation. While automotive drivelines often use driveshafts and universal joints to transmit power to the wheels, industrial drivelines may employ shafts, couplings, and flexible couplings to connect various machinery components such as motors, pumps, and generators.
4. Differentiated Requirements:
Automotive and industrial drivelines have different operating conditions, load requirements, and environmental considerations. Automotive drivelines need to accommodate various road conditions, vehicle dynamics, and driver comfort. Industrial drivelines, on the other hand, may operate in more controlled environments but are subjected to specific industry requirements, such as high torque, continuous operation, or exposure to harsh conditions. The driveline components and materials can be adapted accordingly to meet these different requirements.
5. Control and Monitoring Systems:
Both automotive and industrial drivelines can benefit from advanced control and monitoring systems. These systems can optimize power distribution, manage gear shifts, monitor component health, and improve overall driveline efficiency. In automotive applications, electronic control units (ECUs) play a significant role in controlling driveline functions, while industrial drivelines may incorporate programmable logic controllers (PLCs) or other specialized control systems.
6. Customization and Integration:
Drivelines can be customized and integrated into specific automotive and industrial applications. Automotive drivelines can be tailored to meet the requirements of different vehicle types, such as passenger cars, trucks, or sports vehicles. Industrial drivelines can be designed to integrate seamlessly with specific machinery and equipment, considering factors such as available space, power requirements, and maintenance accessibility.
7. Maintenance and Service:
While the specific maintenance requirements may vary, both automotive and industrial drivelines require regular inspection, lubrication, and component replacement to ensure optimal performance and longevity. Proper maintenance practices, as discussed earlier, are essential for prolonging the lifespan of driveline components in both settings.
In summary, drivelines can be adapted for use in both automotive and industrial settings by considering the unique requirements and operating conditions of each application. While there are some differences in design considerations and component selection, the fundamental principles of power transmission and driveline functionality remain applicable in both sectors.
How do drivelines enhance the performance of different types of vehicles?
Drivelines significantly contribute to enhancing the performance of different types of vehicles by optimizing power delivery, improving traction, and tailoring the driving characteristics to suit specific needs. Here’s a detailed explanation of how drivelines enhance performance in various vehicle types:
1. Passenger Cars:
In passenger cars, driveline configurations, such as front-wheel drive (FWD), rear-wheel drive (RWD), and all-wheel drive (AWD), play a crucial role in performance. Here’s how drivelines enhance performance in passenger cars:
- FWD: Front-wheel drive systems provide better traction and stability, particularly in adverse weather conditions. FWD drivelines distribute weight more evenly over the front wheels, resulting in improved grip during acceleration and cornering.
- RWD: Rear-wheel drive drivelines offer better weight distribution, allowing for improved handling and balanced performance. RWD vehicles typically exhibit better acceleration and a more engaging driving experience, especially in performance-oriented cars.
- AWD: All-wheel drive drivelines deliver power to all four wheels, improving traction and stability in various driving conditions. AWD systems enhance performance by maximizing grip and providing optimal power distribution between the front and rear wheels.
2. Sports Cars and Performance Vehicles:
Driveline systems in sports cars and performance vehicles are designed to enhance acceleration, handling, and overall driving dynamics. Key features include:
- Rear-Wheel Drive (RWD): RWD drivelines are often favored in sports cars for their ability to deliver power to the rear wheels, resulting in better weight transfer during acceleration and improved handling characteristics.
- Performance-oriented AWD: Some high-performance vehicles employ advanced AWD systems that can variably distribute torque between the front and rear wheels. These systems enhance traction, stability, and cornering capabilities, allowing for superior performance on both dry and slippery surfaces.
- Torque Vectoring: Certain driveline systems incorporate torque vectoring technology, which actively varies the torque distribution between wheels. This enables precise control during cornering, reducing understeer and enhancing agility and stability.
3. Off-Road Vehicles:
Drivelines in off-road vehicles are designed to provide exceptional traction, durability, and maneuverability in challenging terrains. Key features include:
- Four-Wheel Drive (4WD) and All-Wheel Drive (AWD): 4WD and AWD drivelines are commonly used in off-road vehicles to improve traction on uneven surfaces. These drivelines distribute power to all wheels, allowing for better grip and enhanced off-road capability.
- Differential Locks: Off-road drivelines often incorporate differential locks that can be engaged to lock the wheels on an axle together. This feature ensures that power is evenly distributed to all wheels, maximizing traction and overcoming challenging obstacles.
- High Ground Clearance: Drivelines in off-road vehicles are designed to accommodate higher ground clearance, allowing for improved approach, departure, and breakover angles. This design feature enhances the vehicle’s ability to navigate over rough terrain without damaging the driveline components.
4. Trucks and Commercial Vehicles:
Drivelines in trucks and commercial vehicles are engineered to provide high torque delivery, durability, and efficiency. Key features include:
- High Torque Handling: Drivelines in trucks and commercial vehicles are designed to handle high torque outputs from powerful engines, enabling efficient towing, hauling, and overall performance.
- Transmission Options: Drivelines in trucks often feature transmissions with multiple gear ratios, allowing drivers to select the appropriate gear for different load conditions. This enhances performance, fuel efficiency, and overall drivability.
- Efficient Power Transfer: Drivelines in commercial vehicles focus on maximizing power transfer efficiency, minimizing energy losses, and optimizing fuel economy. This is achieved through the use of efficient transmission designs, low-friction components, and advanced control systems.
5. Electric and Hybrid Vehicles:
Drivelines in electric and hybrid vehicles play a crucial role in delivering power from the electric motor(s) to the wheels. Key features include:
- Instant Torque: Electric drivelines offer instant torque delivery, providing quick acceleration andresponsive performance. This enhances the driving experience and allows for swift overtaking and merging.
- Regenerative Braking: Electric and hybrid drivelines can incorporate regenerative braking systems, which convert kinetic energy during braking into electrical energy. This improves overall efficiency and extends the vehicle’s range.
- Multi-Motor Systems: Some electric and hybrid drivelines utilize multiple motors to drive different axles or wheels independently. This enables advanced torque vectoring and enhances handling, stability, and traction control.
These are just a few examples of how drivelines enhance the performance of different types of vehicles. Driveline configurations, technologies, and engineering considerations are tailored to each vehicle type, optimizing power delivery, handling, traction, and other performance characteristics specific to their intended use and market segment.
How do drivelines contribute to power transmission and motion in various applications?
Drivelines play a crucial role in power transmission and motion in various applications, including automotive vehicles, agricultural machinery, construction equipment, and industrial systems. They are responsible for transmitting power from the engine or power source to the driven components, enabling motion and providing the necessary torque to perform specific tasks. Here’s a detailed explanation of how drivelines contribute to power transmission and motion in various applications:
1. Automotive Vehicles: In automotive vehicles, such as cars, trucks, and motorcycles, drivelines transmit power from the engine to the wheels, enabling motion and propulsion. The driveline consists of components such as the engine, transmission, drive shafts, differentials, and axles. The engine generates power by burning fuel, and this power is transferred to the transmission. The transmission selects the appropriate gear ratio and transfers power to the drive shafts. The drive shafts transmit the power to the differentials, which distribute it to the wheels. The wheels, in turn, convert the rotational power into linear motion, propelling the vehicle forward or backward.
2. Agricultural Machinery: Drivelines are extensively used in agricultural machinery, such as tractors, combines, and harvesters. These machines require power transmission to perform various tasks, including plowing, tilling, planting, and harvesting. The driveline in agricultural machinery typically consists of a power take-off (PTO) unit, drive shafts, gearboxes, and implement shafts. The PTO unit connects to the tractor’s engine and transfers power to the drive shafts. The drive shafts transmit power to the gearboxes, which further distribute it to the implement shafts. The implement shafts drive the specific agricultural implements, enabling them to perform their intended functions.
3. Construction Equipment: Drivelines are essential in construction equipment, such as excavators, loaders, bulldozers, and cranes. These machines require power transmission to perform tasks such as digging, lifting, pushing, and hauling. The driveline in construction equipment typically consists of an engine, transmission, drive shafts, hydraulic systems, and various gear mechanisms. The engine generates power, which is transferred to the transmission. The transmission, along with the hydraulic systems and gear mechanisms, converts and controls the power to drive the different components of the equipment, allowing them to perform their specific functions.
4. Industrial Systems: Drivelines are widely used in industrial systems and machinery, including conveyor systems, manufacturing equipment, and heavy-duty machinery. These applications require power transmission for material handling, processing, and production. The driveline in industrial systems often involves electric motors, gearboxes, drive shafts, couplings, and driven components. The electric motor provides rotational power, which is transmitted through the driveline components to drive the machinery or conveyors, facilitating the desired motion and power transmission within the industrial system.
5. Power Generation: Drivelines are also employed in power generation applications, such as generators and turbines. These systems require power transmission to convert mechanical energy into electrical energy. The driveline in power generation often consists of a prime mover, such as an internal combustion engine or a steam turbine, connected to a generator. The driveline components, such as couplings, gearboxes, and drive shafts, transmit the rotational power from the prime mover to the generator, which converts it into electrical power.
6. Marine and Aerospace Applications: Drivelines are utilized in marine vessels and aerospace systems to facilitate propulsion and motion. In marine applications, drivelines transfer power from engines or turbines to propellers or water jets, enabling the vessel to move through the water. In aerospace applications, drivelines transmit power from engines to various components, such as rotors or propellers, providing the necessary thrust for flight.
In summary, drivelines are integral to power transmission and motion in a wide range of applications. They enable the transfer of power from the engine or power source to the driven components, allowing for the generation of torque and the performance of specific tasks. Drivelines play a vital role in automotive vehicles, agricultural machinery, construction equipment, industrial systems, power generation, and marine and aerospace applications, contributing to efficient power transmission, motion, and the overall functionality of these diverse systems.
editor by CX 2024-04-16
China supplier Turning Milling Precison Part CNC Machining Stepped Stainless Drive Shaft for Medical
Product Description
Company Profile
—–ABOUT US—–
Focuses on the research, development, production, sales and service of fasteners, precision hardware parts and various metal products.
HangZhou CZPT CZPT Technology Co., Ltd. was established on March 1, 2016. It is located in Xihu (West Lake) Dis.ang District, HangZhou City, ZheJiang Province. It covers an area of 5600 square CZPT and focuses on the research, development, production, sales and service of fasteners, precision hardware parts and various metal products. The processed products are mainly cold heading, forging, precision turning, milling, assembly, stamping, supplemented by extrusion, upsetting and casting. In addition, we also have rich experience in anodizing, electroplating and heat treatment.
Product Parameters
No. | Item | Specifications |
1 | Materials | Carbon steel: 12L15, 45#, 42CrMo; Stainless steel: 303, 304, 316, 420, 630; Aluminum alloy: 6061, 6063, 5052, 7075; Copper alloy: brass H58-H63, phosphor bronze, beryllium copper; Pure copper: T0 oxygen-free copper, T2 red copper; Plastics: nylon, bakelite, POM, PEEK; |
2 | Diameter | Ø0.3-Ø50 |
3 | Diameter tolerance | 0.005mm |
4 | Hardness: | HRC/HV |
5 | Length | 0.5mm-500mm |
6 | Heat treatment | Oil Quenching High frequency quenching Carburization Vacuum Heat treatment Mesh belt CZPT heat treatment |
7 | Surface treatment | Electrolytic plating (barrel plating, rack plating); Electroless plating (nickel plating); Ordinary sandblasting and anodizing (black, silver, gray, gold, red) Plastic spraying, spraying metal paint, etc.; |
Work Shop
Certifications
Research & Development
Development intervention
Development ability
Cost accounting
Quality control
Production feasibility assessment
Project landing
Assembly service
Complex project decomposition & optimization capabilities
Quick sample
Optimization of the mold plan for mass products
Product Category
Precision turning parts
Precision machining parts
Special requirements appearance parts
Presentative Brand
Why Choose Us?
Create value for customers
Support + Service + Made in China + Technological Innovation = Solution
★ Project management, solutions
★ Quickly designing and sampling
★ New product development, technological breakthrough
★ Component and machine assembly service
Engineering capabilities
★Development intervention
★Development ability
Cost accounting
Quality control
Production feasibility assessment
Project landing
Assembly service
★Complex project decomposition & optimization capabilities
★Quick sample
★Optimization of the mold plan for mass products /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Alloy Steel |
---|---|
Load: | Drive Shaft |
Stiffness & Flexibility: | Stiffness / Rigid Axle |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do drive shafts ensure efficient power transfer while maintaining balance?
Drive shafts employ various mechanisms to ensure efficient power transfer while maintaining balance. Efficient power transfer refers to the ability of the drive shaft to transmit rotational power from the source (such as an engine) to the driven components (such as wheels or machinery) with minimal energy loss. Balancing, on the other hand, involves minimizing vibrations and eliminating any uneven distribution of mass that can cause disturbances during operation. Here’s an explanation of how drive shafts achieve both efficient power transfer and balance:
1. Material Selection:
The material selection for drive shafts is crucial for maintaining balance and ensuring efficient power transfer. Drive shafts are commonly made from materials such as steel or aluminum alloys, chosen for their strength, stiffness, and durability. These materials have excellent dimensional stability and can withstand the torque loads encountered during operation. By using high-quality materials, drive shafts can minimize deformation, flexing, and imbalances that could compromise power transmission and generate vibrations.
2. Design Considerations:
The design of the drive shaft plays a significant role in both power transfer efficiency and balance. Drive shafts are engineered to have appropriate dimensions, including diameter and wall thickness, to handle the anticipated torque loads without excessive deflection or vibration. The design also considers factors such as the length of the drive shaft, the number and type of joints (such as universal joints or constant velocity joints), and the use of balancing weights. By carefully designing the drive shaft, manufacturers can achieve optimal power transfer efficiency while minimizing the potential for imbalance-induced vibrations.
3. Balancing Techniques:
Balance is crucial for drive shafts as any imbalance can cause vibrations, noise, and accelerated wear. To maintain balance, drive shafts undergo various balancing techniques during the manufacturing process. Static and dynamic balancing methods are employed to ensure that the mass distribution along the drive shaft is uniform. Static balancing involves adding counterweights at specific locations to offset any weight imbalances. Dynamic balancing is performed by spinning the drive shaft at high speeds and measuring any vibrations. If imbalances are detected, additional adjustments are made to achieve a balanced state. These balancing techniques help minimize vibrations and ensure smooth operation of the drive shaft.
4. Universal Joints and Constant Velocity Joints:
Drive shafts often incorporate universal joints (U-joints) or constant velocity (CV) joints to accommodate misalignment and maintain balance during operation. U-joints are flexible joints that allow for angular movement between shafts. They are typically used in applications where the drive shaft operates at varying angles. CV joints, on the other hand, are designed to maintain a constant velocity of rotation and are commonly used in front-wheel-drive vehicles. By incorporating these joints, drive shafts can compensate for misalignment, reduce stress on the shaft, and minimize vibrations that can negatively impact power transfer efficiency and balance.
5. Maintenance and Inspection:
Regular maintenance and inspection of drive shafts are essential for ensuring efficient power transfer and balance. Periodic checks for wear, damage, or misalignment can help identify any issues that may affect the drive shaft’s performance. Lubrication of the joints and proper tightening of fasteners are also critical for maintaining optimal operation. By adhering to recommended maintenance procedures, any imbalances or inefficiencies can be addressed promptly, ensuring continued efficient power transfer and balance.
In summary, drive shafts ensure efficient power transfer while maintaining balance through careful material selection, thoughtful design considerations, balancing techniques, and the incorporation of flexible joints. By optimizing these factors, drive shafts can transmit rotational power smoothly and reliably, minimizing energy losses and vibrations that can impact performance and longevity.
How do drive shafts contribute to the efficiency of vehicle propulsion and power transmission?
Drive shafts play a crucial role in the efficiency of vehicle propulsion and power transmission systems. They are responsible for transferring power from the engine or power source to the wheels or driven components. Here’s a detailed explanation of how drive shafts contribute to the efficiency of vehicle propulsion and power transmission:
1. Power Transfer:
Drive shafts transmit power from the engine or power source to the wheels or driven components. By efficiently transferring rotational energy, drive shafts enable the vehicle to move forward or drive the machinery. The design and construction of drive shafts ensure minimal power loss during the transfer process, maximizing the efficiency of power transmission.
2. Torque Conversion:
Drive shafts can convert torque from the engine or power source to the wheels or driven components. Torque conversion is necessary to match the power characteristics of the engine with the requirements of the vehicle or machinery. Drive shafts with appropriate torque conversion capabilities ensure that the power delivered to the wheels is optimized for efficient propulsion and performance.
3. Constant Velocity (CV) Joints:
Many drive shafts incorporate Constant Velocity (CV) joints, which help maintain a constant speed and efficient power transmission, even when the driving and driven components are at different angles. CV joints allow for smooth power transfer and minimize vibration or power losses that may occur due to changing operating angles. By maintaining constant velocity, drive shafts contribute to efficient power transmission and improved overall vehicle performance.
4. Lightweight Construction:
Efficient drive shafts are often designed with lightweight materials, such as aluminum or composite materials. Lightweight construction reduces the rotational mass of the drive shaft, which results in lower inertia and improved efficiency. Reduced rotational mass enables the engine to accelerate and decelerate more quickly, allowing for better fuel efficiency and overall vehicle performance.
5. Minimized Friction:
Efficient drive shafts are engineered to minimize frictional losses during power transmission. They incorporate features such as high-quality bearings, low-friction seals, and proper lubrication to reduce energy losses caused by friction. By minimizing friction, drive shafts enhance power transmission efficiency and maximize the available power for propulsion or operating other machinery.
6. Balanced and Vibration-Free Operation:
Drive shafts undergo dynamic balancing during the manufacturing process to ensure smooth and vibration-free operation. Imbalances in the drive shaft can lead to power losses, increased wear, and vibrations that reduce overall efficiency. By balancing the drive shaft, it can spin evenly, minimizing vibrations and optimizing power transmission efficiency.
7. Maintenance and Regular Inspection:
Proper maintenance and regular inspection of drive shafts are essential for maintaining their efficiency. Regular lubrication, inspection of joints and components, and prompt repair or replacement of worn or damaged parts help ensure optimal power transmission efficiency. Well-maintained drive shafts operate with minimal friction, reduced power losses, and improved overall efficiency.
8. Integration with Efficient Transmission Systems:
Drive shafts work in conjunction with efficient transmission systems, such as manual, automatic, or continuously variable transmissions. These transmissions help optimize power delivery and gear ratios based on driving conditions and vehicle speed. By integrating with efficient transmission systems, drive shafts contribute to the overall efficiency of the vehicle propulsion and power transmission system.
9. Aerodynamic Considerations:
In some cases, drive shafts are designed with aerodynamic considerations in mind. Streamlined drive shafts, often used in high-performance or electric vehicles, minimize drag and air resistance to improve overall vehicle efficiency. By reducing aerodynamic drag, drive shafts contribute to the efficient propulsion and power transmission of the vehicle.
10. Optimized Length and Design:
Drive shafts are designed to have optimal lengths and designs to minimize energy losses. Excessive drive shaft length or improper design can introduce additional rotational mass, increase bending stresses, and result in energy losses. By optimizing the length and design, drive shafts maximize power transmission efficiency and contribute to improved overall vehicle efficiency.
Overall, drive shafts contribute to the efficiency of vehicle propulsion and power transmission through effective power transfer, torque conversion, utilization of CV joints, lightweight construction, minimized friction, balanced operation, regular maintenance, integration with efficient transmission systems, aerodynamic considerations, and optimized length and design. By ensuring efficient power delivery and minimizing energy losses, drive shafts play a significant role in enhancing the overall efficiency and performance of vehicles and machinery.
How do drive shafts handle variations in length and torque requirements?
Drive shafts are designed to handle variations in length and torque requirements in order to efficiently transmit rotational power. Here’s an explanation of how drive shafts address these variations:
Length Variations:
Drive shafts are available in different lengths to accommodate varying distances between the engine or power source and the driven components. They can be custom-made or purchased in standardized lengths, depending on the specific application. In situations where the distance between the engine and the driven components is longer, multiple drive shafts with appropriate couplings or universal joints can be used to bridge the gap. These additional drive shafts effectively extend the overall length of the power transmission system.
Additionally, some drive shafts are designed with telescopic sections. These sections can be extended or retracted, allowing for adjustments in length to accommodate different vehicle configurations or dynamic movements. Telescopic drive shafts are commonly used in applications where the distance between the engine and the driven components may change, such as in certain types of trucks, buses, and off-road vehicles.
Torque Requirements:
Drive shafts are engineered to handle varying torque requirements based on the power output of the engine or power source and the demands of the driven components. The torque transmitted through the drive shaft depends on factors such as the engine power, load conditions, and the resistance encountered by the driven components.
Manufacturers consider torque requirements when selecting the appropriate materials and dimensions for drive shafts. Drive shafts are typically made from high-strength materials, such as steel or aluminum alloys, to withstand the torque loads without deformation or failure. The diameter, wall thickness, and design of the drive shaft are carefully calculated to ensure it can handle the expected torque without excessive deflection or vibration.
In applications with high torque demands, such as heavy-duty trucks, industrial machinery, or performance vehicles, drive shafts may have additional reinforcements. These reinforcements can include thicker walls, cross-sectional shapes optimized for strength, or composite materials with superior torque-handling capabilities.
Furthermore, drive shafts often incorporate flexible joints, such as universal joints or constant velocity (CV) joints. These joints allow for angular misalignment and compensate for variations in the operating angles between the engine, transmission, and driven components. They also help absorb vibrations and shocks, reducing stress on the drive shaft and enhancing its torque-handling capacity.
In summary, drive shafts handle variations in length and torque requirements through customizable lengths, telescopic sections, appropriate materials and dimensions, and the inclusion of flexible joints. By carefully considering these factors, drive shafts can efficiently and reliably transmit power while accommodating the specific needs of different applications.
editor by CX 2024-04-04
in Grande Vitoria Brazil sales price shop near me near me shop factory supplier High Precision 19X162 Stepped Strainght Knurling Blackening Motor Rotor Steel Shaft manufacturer best Cost Custom Cheap wholesaler
We can supply a entire-assortment of electricity transmission merchandise like chains, sprockets and plate wheels, pulleys, gearboxes, motors, couplings, gears and racks. Every single approach, every section, each and every function in EPG is demanded to be done one particular action pursuing another, cautiously and cautiously, from materials assortment, reformation to production accessories, from factors heat remedy to automated assembly, from good quality management to merchandise inspection and tests and from buy working to following sales services. Full use has been made of all varieties of superior tactics and technological innovation to get to excelsior producing.
1. Description
Solution title |
304 stainless metal shaft |
EPT |
Stainless Steel,EPTT,Brass, Bronze,EPTT metal and ect. environmental defense materials. |
Dimension |
EPTT according to your drawing. |
Solutions |
OEM, design, EPT |
Tolerance |
/-.01mm to /-.005mm |
Surface remedy |
Passivation *PoEPTTng *Anodizing *Sand blasting *Electroplating(coloration, blue, white, black zinc, Ni, Cr, tin, copper, silver) *Black oXiHu (West EPT) Dis.de coating *Warmth-disposing *Sizzling-dip galvanizing *Rust preventive oil |
MOQ |
1 piece Copper bushing |
Samples |
We can make sample within 7daEPTTfree of cost |
Certificate |
ISO9001:2015 cnc machining turning parts shaft |
Payment Terms |
Bank TransferWestern EPT Paypal Payoneer, Alibaba EPT Assurance30% deposit amp balance ahead of transport. |
Shipping time |
Within 15-20 workdaEPTTafter deposit or payment EPTd |
EPT Port |
HangEPT 304 stainless steel shaft |
two. Primary EPT Shafts
3. Function Flow
4. Software
5. About US
in Cordoba Argentina sales price shop near me near me shop factory supplier Open Die Forging Rotor Shaft Rotor Forgings Hot Forged Stepped Shaft manufacturer best Cost Custom Cheap wholesaler
EPG will constantly adhere to it business spirit of currently being practical, modern, successful and excellent to make the leading intercontinental transmission generate. Our merchandise are produced by modern computerized machinery and gear. With EPG manufacturer registered in much more than 70 nations around the world like America , Europe , Japan and so on, it has partners amid planet prime enterprises, these kinds of as JOHNDEERE, NEW HOLLAND, CLAAS, HONDA, KUBOTA, YANMAR, and so on.
Open die forging rotor shaft rotor forgings sizzling cast stepped shaft
Manufacturing unit Introduction
It is our wonderful enjoyment to take a honourable opportunity to introduce ourselves, EPTEPTTn EPT EPT EPTTry EPTT,Ltd. The large precision forging supplier in EPTT. Manufacturing unit situated in XiHu (West EPT) Dis.hu (West EPT) Dis., ZheJiang Province. EPTTs an spot of 66,000 Sq. meter, and has a building area of 14,000 Square meter. Presently, EPT has a hundred and sixty staff, owns mounted assets achieving RMB 35 million, and offers an once-a-year output worth of RMB eighty million and EPTs a lot more than RMB 4 million taxes.
Our items ranges from shaft, flange, plate, valve block, bar, disc, ring, sleeve and so forth.The weighty forging: solid ring, shaft, roller, flange is widely used for various EPTT.
Very fortuitous to cooperate with some world-renowned organizations, like: EPT, Putzmeister, FLSmidth, EPT, , MSP/Drilex,etc. These cooperation carry us much more than revenue, what’s much more, high quality is lifestyle. Inside our coustomers’ assist, established up a rigorous top quality control technique.From raw material to concluded elements, every method have to inpect, have traceable information. The pursuing data files will be explained in element.
Set up a stringent high quality manage method.From raw substance to completed elements, every process have to inpect, have traceable files.
We have experienced environmental affect assessment. So our manufacturing will not be afflicted by environmental inspection.
We equally have forging and machining ability.
Two gasoline heating furnaces, monitored and controlled by personal computer plans to make certain precise heating within established time and temperature variety as needed.
IncXiHu (West EPT) Dis.Hu (West EPT) Dis. a 2500 Tons friction push, a five Tons EPT harmmer.
A 3 aXiHu (West EPT) Dis.s CNC machining cEPTTr, a milling planer, three CNC machining cEPTTr, 4 milling cEPTTr, 3 turning cEPTTr, 20 CNC lathes. Far more than 80 staff. IncXiHu (West EPT) Dis.Hu (West EPT) Dis. a 2500 Tons friction push, a 5 Tons EPT harmmer.
Benefit-additional services these kinds of as, rolling, grindring, warmth treatment method, welding, tough chrome plating, poEPTTng, portray, assembling are also avaliable.
Dimensions selection: phi50mm #8594 phi1000mm
Duration: 150mm #8594 4000mm
Fat: 20kg #8594 three Ton
EPT: EPTT steel, Cr ampMo Alloy steel, Stainless Metal
Manufacturing CEPTTr
Equip with medium and huge dimension CNC EPTT resources, incXiHu (West EPT) Dis.Hu (West EPT) Dis. horizontal CNC laths, vertical CNC lathes, HMC, VMC, CNC HBM and etc., to meet up with customer turnkey specifications ( EPT, Rough Machining, End Machining).
Product Depth
Merchandise Information | |
Creation Title: | Open up die forging rotor shaft rotor forgings hot solid stepped shaft |
Certification: | BV,TUV,SGS,ISO9000 |
EPTT: | forging,open up die forging,cost-free forging,ring forging,stamping,hot,rolling |
EPT: | CNC Machining Centres |
EPT: | EPTT metal,Alloy metal,stainless metal |
Floor treatment: | Heat Remedy,oXiHu (West EPT) Dis.de coating,plating,ending,portray,galvanized |
Model Quantity: | Personalized In accordance to Drawings |
Software: | oil and fuel,oilfield,EPT EPTT EPTTry |
Chrome thickness: | twenty~30micron |
Size: | 1000mm~10000mm |
Excess weight: | 10kg-3000kg |
Tolerance: | .01mm |
Roughness: | Ra .2micron (max) |
Torque Potential: | 3600N |
Yield Toughness: | ge320 Mpa |
Tensile Strength: | ge580 Mpa |
EEPTTation: | ge 15% |
EPTT: | EPT box for free of charge fumigate or in accordance to customers’ specifications |
Cargo | By Sea/ By Train |
forging abilities chart for measurement abilities
condition | size/bodyweight | ferrous alloys | |
carbon,alloy amp stainless | |||
Round bar/blocks | min.duration | 300mm | |
min.excess weight | 20kg | ||
cylinders/sleeves/bushing | min.O.D. | 150mm | |
min.length | 300mm | ||
disk/hubs | min.dia | 150mm | |
min.excess weight | 20kg | ||
rolled rings | min. O.D. | 200mm | |
min.duration | 300mm | ||
shafts | min.dia | 100mm | |
min.size | 300mm |
solid spindle shaft/EPT shaft/flange shaft/worm shaft/action shaft/roller shaft/major shaft and so on.Hot forging open die forging shaft
Generation procedure
Raw EPT | Choose One-Amount ingot steel, examine chemical component , validate obtain requirements. |
EPT | EPT to the specified time and temperature. Have two sorts forging harmmer open up forging and die forging . |
Warmth Treatment | In accordance Tensile,Yield, Hardness requirements, fully heating. IncloEPTTA,N,Q,T, surface area EPTT and neighborhood EPTT. |
Machining | Equip horizontal lathe, vertical lathe, CNC lathe, CNC machining cEPTTr, turning EPTT,boring EPTT, milling EPTT, grinder. Tolerance can keep /-.02mm, surface area roughness can hole Ra0.eight. Grindering geometric tolerance. |
Inspect |
Each and every items mad a check bar, used for check hardness and mechanical homes. All forging rough a hundred% UT inspect. |
Solution EPTT
The inner EPTT is bubble movie, EPT absorption, avoid scratches, and efficiently avert injury to goods during transportation.
The outer EPTT is totally free fumigating wooden situation, ligEPTT and stunning, can be utilized frequently, minimize the difficult procedures and techniques these kinds of as fumigation commodity inspection, increase function effectiveness.
The EPTT issue is the shipment from EPTTngdao port, which can be transported by air or by land according to the customer’s need.
Our Services
We can offer component with stick to examination reviews :
one)EPT Test Report
two)Dimension checking record report
3)Total dimension report
4)EPTlographic structure report
five)Tensile power report
six)UT,MT ampPT test report
seven)EN15714/three.one
8)3rd-social gathering examination report(If need)
Advantages
1)30 many years expertise in forging and machining
two)Superb EPT technique
3)Give sample, 1 piece is one get
four)EPTT you the most suited goods
Certificates
If you want,we can offer ISO9001,TS,TUV,BV,SGS.
Why need to you pick EPT?
one.Excellent and professional provider:
We have a higher good quality income crew incXiHu (West EPT) Dis.Hu (West EPT) Dis. product sales personnel, quality engineers and specialists.
two.EPTT handle:
Each item require to be checked by numerous procedures.
three.Shipping time:
Supply will be ready inside 30 daEPTTafter obtaining your down payment. four.Comprehensive support:
EPT all the products with good top quality and competitive price.
five.A reliable and respected supplier is the important to your effective company.
in Karbala Iraq sales price shop near me near me shop factory supplier China Wholesales Long Spline Forging Stepped Motor Drive Shaft manufacturer best Cost Custom Cheap wholesaler
Moreover, WE CAN Make Customized VARIATORS, GEARED MOTORS, Electrical MOTORS AND OTHER HYDRAULIC Goods In accordance TO CUSTOMERS’ DRAWINGS. Our AdvantagesProducts Huge quantity in Stock, No MOQ essential We comply with all the international requirements, such as ISO9001 and TS16949 specifications. We have exported our products to Korea, Turkey, Bulgaria, Romania, Russia, Italy, Norway, the United states of america, Canada, etc. We EPTTized in precision parts and components machining to serve the electronics, automotive areas, astronautical elements, health care EPTs and hand tool EPTT. And broadly selection of style and production incXiHu (West EPT) Dis.Hu (West EPT) Dis. personalized cnc machining, cnc EPTTd components, non-stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd EPTT parts, EPTTd casting parts and precision turned parts that the resources of EPT elements are in steel, stainless metal, brass, EPT and plastic.
Major products
one. Spline EPT
two. Spline shaft
3. shaft coupling
4. Flange
5. EPT Brake
Element identify | Spline Shaft |
EPTs Accessible | 1. Stainless Steel: SS304 , SS316,SS420 |
two. EPTT Steel:C45(K1045), C46(K1046) | |
3. Brass: C37700 ( HPb59) | |
four. Bronze: C51000, C52100, C54400, and so on | |
five. Iron: 1213, 1214,1215 | |
six. EPTT: 6063 T5 6063T6 6061 T5/T6, 7075 T5 /T6 | |
BORE | Completed bore , Pilot Bore, |
Area Treatment method | EPT frequency treatment ,Hardness tooth, integral heat treatment method, blackening, Zinc-plated, Nickel-plated, anodized etc. |
EPT grade | AGMA ,EPTT N8 Quality(JIS B1702-one:1998) , DIN |
Processing Approach | CNC machining, Shaving m, Hobbing grinding, chamfering etc. |
Measurement | Customer Drawings amp ISO stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd |
Package deal | Plastic Baggage and EPTen Cases |
Certificate | IATF 16949:2016 |
Advantage | Certain quality , EPTT providers, Competitive costs, Rapidly delivery |
EPT Time | 5-ten DaEPTTfor Samples20-35 DaEPTTfor Batch Products |
EPTT honor
EPTT tools and environment
Production approach
EPTT and cargo
Our service
1. Prompt reply to your enquiry and quick quotations inside 24 hrs.
two. Check out your EPTs drawings really very carefully and feedbacks with professional engineering questions on your patterns.
3. All EPTs proportions and tolerances will meet your drawings and eliminate all risks after your POs.
4. Punctual guide time and send you samples before bulk generation.
five. Dependable for all flaws or decline from the EPTs we produced.
FAQ
Q1:How to guarantee the EPTT of EPTT Components?
A1:we are IATF 16949:2016 licensed organization.In 2004, we handed the ISO 9001:2000 good quality technique certification.In 2571,we handed the ISO 9001:2008 EPTT Method Certification of EPTT Classification Modern society.we have the integrated program for EPTT areas high quality handle. We have IQC (incoming high quality manage), IPQCS (in procedure high quality manage EPT), FQC (last high quality manage) and OQC (out-going good quality management) to management every single procedure of EPTT components prodution.
Q2:What’s the Benefit of Your Areas for Sector EPT?
A2:Our benefit is the aggressive prices, rapidly shipping and substantial top quality. Our personnel are liable-oriEPTTd, friendly-oriEPTTd,and dilient-oriEPTTd. our EPTT areas goods are featured by rigorous tolerance, sleek finish and EPTT-lifestyle functionality.
Q3:what are our machining equipmengts?
A3:Our machining equipments incEPTT CNC milling EPTTs, CNC turning EPTTs, stamping
EPTTs,hobbing EPTTs, computerized lathe EPTTs, tapping EPTTs, grinding EPTTs,
screw EPTTs, cutting EPTTs and so on.
Q4: What delivery waEPTTour use?
A4:EPTTly sEPTing, we will use UPS or DHL to ship the items. Our clients can achieve the
items in three times.If our customers do not need to have them urgently, we will also use Fedex and TNT.If the products are of hefty weigEPTT and huge volumn, we will ship them by sea. This way can conserve our clients a lot of cash.
Q5:What supplies can you handle?
A6:Brass,bronze,copper,stainless steel, steel,EPT and EPTTium.